
ibaAnalyzer
Expression builder

Manual part 3
Issue 8.2

Measurement Systems for Industry and Energy
www.iba-ag.com

2

Manufacturer

iba AG

Koenigswarterstrasse 44

90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0

Support +49 911 97282-14

Engineering +49 911 97282-13

E-mail iba@iba-ag.com

Web www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this document, nor
to make use of its contents or disclose its contents. Infringements are liable for compensation.

© iba AG 2024, All rights reserved.

The content of this publication has been checked for compliance with the described hardware
and software. Nevertheless, discrepancies cannot be ruled out, and we do not provide guaran-
tee for complete conformity. However, the information furnished in this publication is updated
regularly. Required corrections are contained in the following regulations or can be downloaded
on the Internet.

The current version is available for download on our web site www.iba-ag.com.

Version Date Revision Author Version SW

8.2 04-2024 Syntax of expressions TS 8.2.0

Windows® is a brand and registered trademark of Microsoft Corporation. Other product and
company names mentioned in this manual can be labels or registered trademarks of the corre-
sponding owners.

3 Issue 8.2 3

ibaAnalyzer Contents

Contents

1	 About	this	documentation ..8

1.1 Target group.. 8

1.2 Notations .. 8

1.3 Used symbols .. 9

1.4 Documentation structure ... 10

2	 Function	and	use ...11

2.1 Configuration ..11

2.2 Expression syntax and wildcards .. 12

2.3 How the expression builder works ... 13

2.4 Diagnostics / syntax error detection ... 13

3	 Logical	functions ...15

3.1 Comparative operations ... 15

3.2 Boolean functions ...16

3.3 Bitwise Boolean functions .. 16

3.4 Branching .. 17

3.4.1 If .. 17

3.4.2 Switch ... 18

3.5 Edge Detection ...19

3.5.1 OneShot .. 19

3.5.2 SetReset .. 19

3.6 Timer functions (IEC 61131-3) .. 20

3.7 IsData / Coalesce ..21

4	 Mathematical	functions ..22

4.1 Fundamental arithmetic operations ... 22

4.1.1 Fundamental arithmetic operations +, -, *, / .. 22

4.1.2 Abs .. 22

4.1.3 Mod .. 22

4.1.4 Ceiling / Floor / Round .. 23

4.2 Integral and differential calculation .. 24

4.2.1 Int ... 24

4 Issue 8.2

Contents ibaAnalyzer

4.2.2 Diff / Dif .. 24

4.3 Powers and square roots .. 25

4.3.1 Pow ... 25

4.3.2 Sqrt ... 25

4.4 e functions and logarithms ... 26

4.4.1 Exp .. 26

4.4.2 Log .. 26

4.4.3 Log10 .. 26

4.5 PI ... 26

4.6 Sum ... 27

4.7 Trigonometric functions ... 28

5	 Statistical	functions ...29

5.1 Average (Avg) ..29

5.2 Maxima (Max) ...31

5.3 Minima (Min) ..33

5.4 Standard deviation (StdDev) ... 34

5.5 Percentile .. 37

5.6 Correlation and covariance (Correl, CoVar) .. 39

5.7 Kurtosis ... 40

5.8 Skewness .. 42

6	 Counting	and	sorting ...44

6.1 Count .. 44

6.2 CountSamples ...46

6.3 Sort ... 46

7	 Time	/	length	functions ...47

7.1 Convert and resample .. 47

7.1.1 ConvertBase ..47

7.1.2 Resample .. 47

7.1.3 SampleAndHold ..48

7.1.4 SampleOnce ..48

7.2 Time .. 49

7.2.1 Time .. 49

 Issue 8.2 5

ibaAnalyzer Contents

7.2.2 AbsoluteTime ..50

7.3 Conversion from time to length reference ... 50

8	 X-axis	operations ...52

8.1 Shift along the X axis ...52

8.2 XCutRange / XCutValid .. 53

8.3 XMarkRange / XMarkValid .. 54

8.4 XMirror / XStretch / XStretchScale ... 55

8.5 XFirst / XLast / XNow ..58

8.6 XSize / XSumValid ...58

8.7 XValues / YValues ..59

8.8 VarDelay .. 60

8.9 XY .. 60

8.10 XMarker1 / XMarker2 ...61

8.11 XBase / XOffset ...61

8.12 FillGaps ... 61

8.13 XAlignFft ... 62

9	 Vector	operations ..63

9.1 GetFirstIndex / GetLastIndex .. 63

9.2 GetRows .. 63

9.3 GetZoneCenters ..64

9.4 GetZoneOffset ..64

9.5 GetZoneWidths ...64

9.6 MakeVector .. 64

9.7 SetZoneWidths ...65

9.8 VectorAvg.. 65

9.9 VectorKurtosis...65

9.10 VectorMarkRange ...66

9.11 VectorMin / VectorMax .. 66

9.12 VectorPercentile ...67

9.13 VectorSkewness ..67

9.14 VectorStdDev ..67

9.15 VectorSum .. 67

6 Issue 8.2

Contents ibaAnalyzer

9.16 VectorToSignal / SignalToVector ... 68

9.17 Traverse / TraverseW ..69

9.18 VectorPolynomial / VectorLSQPolyCoef.. 70

10	 Text	functions ..71

10.1 InfofieldText / ChannelInfoFieldText / ModuleInfoFieldText71

10.2 TextCompare / CompareText .. 72

10.3 ToText / FromText ...74

10.4 TrimText .. 76

10.5 ConcatText .. 76

10.6 CharValue ... 76

10.7 CountText / TextLength ... 77

10.8 DeleteText / InsertText / ReplaceText ... 77

10.9 MidText / FindText ..78

11	 Miscellaneous	functions ..79

11.1 Debounce ... 79

11.2 Envelope ... 80

11.3 False / True ... 80

11.4 GetBit / GetBitMask..80

11.5 HighPrecision ..82

11.6 InfoField / ChannelInfoField / ModuleInfoField .. 83

11.7 LimitAlarm .. 84

11.8 ManY... 85

11.9 Rand .. 85

11.10 Sign ... 86

11.11 Technostring ...86

11.12 WindowAlarm ...87

11.13 YatX / SetYatX ..87

11.14 PulseFreq .. 89

12	 Filter	functions ..90

12.1 LP .. 90

12.2 PreWhiten ... 90

 Issue 8.2 7

ibaAnalyzer Contents

13	 Technological	functions ...91

13.1 ChebyCoef .. 91

13.2 CubicSpline ... 91

13.3 LSQPolyCoef ..93

13.4 Polynomial .. 94

13.5 LSQExponentialCoef ...94

13.6 Exponential ... 94

14	 Spectral	analysis	(FT	operations) ...95

14.1 FftInTimeAmpl / FftInTimePower ... 95

14.2 FftOrderAnalysisAmpl / FftOrderAnalysisPower ... 96

14.3 FftPeaksInTimeAmpl / FftPeaksInTimePower ... 98

14.4 FftAmpl / FftPower ...99

14.5 FftComplex ..100

14.6 FftReal / FftRealInverse ... 101

14.7 AWeighting / DbScale ... 102

14.8 IntSpectrum ..102

15	 Electrical	functions .. 103

15.1 Eff .. 103

15.2 Delta functions ...104

15.3 Star functions ..107

15.4 Harmonic functions ..110

15.4.1 TIF ... 112

16 Support and contact .. 113

88 Issue 8.2

About this documentation ibaAnalyzer

1	 About	this	documentation
This documentation describes the function and application of the software

ibaAnalyzer.

1.1 Target group
This documentation is aimed at qualified professionals who are familiar with handling electrical
and electronic modules as well as communication and measurement technology. A person is
regarded as professional if he/she is capable of assessing safety and recognizing possible con-
sequences and risks on the basis of his/her specialist training, knowledge and experience and
knowledge of the standard regulations.

This documentation addresses in particular professionals who are in charge of analyzing mea-
sured data and process data. Because the data is supplied by other iba products the following
knowledge is required or at least helpful when working with ibaAnalyzer:

■	 Operating system Windows

■	 ibaPDA (creation and structure of the measuring data files)

1.2	 Notations
In this manual, the following notations are used:

Action Notation
Menu command Menu Logic diagram
Calling the menu command Step 1 – Step 2 – Step 3 – Step x

Example:
Select the menu Logic diagram – Add – New function
block.

Keys <Key name>

Example: <Alt>; <F1>
Press the keys simultaneously <Key name> + <Key name>

Example: <Alt> + <Ctrl>
Buttons <Key name>

Example: <OK>; <Cancel>
Filenames, paths Filename, Path

Example: Test.docx

 Issue 8.2 9

ibaAnalyzer About this documentation

1.3 Used symbols
If safety instructions or other notes are used in this manual, they mean:

Danger!

The	non-observance	of	this	safety	information	may	result	in	an	imminent	risk	
of death or severe injury:

■	 Observe the specified measures.

Warning!

The	non-observance	of	this	safety	information	may	result	in	a	potential	risk	of	
death or severe injury!

■	 Observe the specified measures.

Caution!

The	non-observance	of	this	safety	information	may	result	in	a	potential	risk	of	
injury or material damage!

■	 Observe the specified measures

Note

A note specifies special requirements or actions to be observed.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other	documentation

Reference to additional documentation or further reading.

10 Issue 8.2

About this documentation ibaAnalyzer

1.4	 Documentation	structure
This documentation describes the functionality of the ibaAnalyzer software in detail. It is de-
signed both as a tutorial as well as a reference document.

In addition to this documentation, you can examine the version history in the main menu, Help
– Version history (file versions.htm) for the latest information about the installed version of
the program. This file not only lists the bugs that have been eliminated but also refers to exten-
sions of the system in note form.

In addition, special "NewFeatures…" documentation comes with any software update that in-
cludes significant new features, which provides a more detailed description of the new features.

The state of the software to which the respective part of this documentation refers is listed in
the revision table on page 2.

The ibaAnalyzer documentation (PDF and printed version) is divided into six separate parts.
Each part has its own section and page numbering beginning at 1, and is updated independent-
ly.

Part Title Content
Part 1 Introduction and Installation General notes, licenses and add-ons

Installation and program start

User interface
Part 2 Working with ibaAnalyzer Working with data file and analysis, presentation

features, macro configuration, filter design, prefer-
ences, printing, export, interfaces to ibaHD-Server,
ibaCapture and report generator

Part 3 Expression editor Directory of all calculation functions in the expres-
sion builder, including explanation

Part 4 Database interface Working with data from databases, connecting to
the database, writing iba measurement data to da-
tabases, extracting the data from the database and
analyzing the data.

Part 5 Interface for file extraction Functions and settings for extracting data from iba
data files to external file formats

Part 6 Application examples In preparation

11 Issue 8.2 11

ibaAnalyzer Function and use

2	 Function	and	use
The expression builder is a tool for entering (mathematical) formulae or expressions which are
described in detail in the following sections. It is also possible in principle to manually enter
these expressions in the lines of the signal table on the Signal definitions tab.

In order to facilitate these inputs and also to provide a detailed list of possible operations and
their syntax, there is the expression builder, which is available in every line in which a signal can
be entered. Start the expression builder by clicking on the symbol in the signal definitions list.

Note

The button in the toolbar does not open the expression builder, but rather
opens the dialog for the logical signal definitions. See Logical signal definitions in
part 2 of the manual.

2.1	 Configuration

The expression builder consists of three areas.

The part on the left shows a signal tree which is very similar to the one in the signal tree win-
dow. However, in contrast to the signal tree window, this window here contains not just the
original signals, but also all the expressions which were already created using the expression

12 Issue 8.2

Function and use ibaAnalyzer

builder. From this signal tree, you can now select the desired signals or expressions to be used
in the calculations.

The right part of the dialog window contains a function tree view with a collection of the avail-
able mathematical operations and other functions sorted by subject.

The command input in which you enter the desired expression in several lines is located below
these two panes. Above this in the gray area is a short note about the syntax of an operation, if
it is marked in the function tree, or a tooltip if the function is marked in the command input.

The <Reset expression> button removes all entries from the command line.

You can enable the "Reference signals by name" check box if you want to use the signal names
in the expressions instead of the usual signal designations consisting of [module number:signal
number].

Note

When using the signal names as signal reference, it must be guaranteed that the
signal names are unambiguous.

2.2 Expression syntax and wildcards
Signals are addressed in ibaAnalyzer expressions using square brackets ‘[‘ and ‘]’ around the
identifier. Every signal available in ibaAnalyzer has an identifier which usually consists of a mod-
ule and signal number. The numbers are separated by a colon ‘:’ for analog and text signals or a
dot ‘.’ for digital signals. In some cases, also a subsignal number is available which is again sepa-
rated by the same separator (depending on the signal type). For files extracted by ibaAnalyzer,
results of calculations can be referenced by their name.

Examples:
■	 [0:0] – analog or text signal, module 0, number 0

■	 [1.2] – digital signal, module 1, number 2

■	 [3:2.1] – analog signal, module 3, number 2, subsignal number 1

■	 [expression] - expression with name ‘expression’

If multiple files are opened in parallel, the file index is also part of the identifier. The first file has
the index 0, but this can also be omitted.

Examples:
■	 [0_0:0] – signal from the first file, module 0, number 0; equal to [0:0]

■	 [2_1:0] – signal from file with index 2 (the third file), module 1, number 0

Using wildcards, multiple signals can be addressed at once. The result is a vector. Every com-
ponent of the identifier (file index, module number, signal number, subsignal number) can be
replaced by a range (e.g. 3-6) or a star ‘*’ (meaning all available numbers)

 Issue 8.2 13

ibaAnalyzer Function and use

Examples:
■	 [*_0:0] – returns the signal [0:0] for all parallel opened files

■	 [0:3-5] – returns signals [0:3], [0:4], and [0:5]

■	 [0-2_3:4] – returns the signal [3:4] of the first 3 files opened in parallel

■	 [*.0] – returns the first digital signal (with number 0) from all available modules

■	 [*_*:*] – returns all analog and text signals of all opened files

2.3	 How	the	expression	builder	works
The expression builder makes it possible to apply both the operations as well as the operands,
i.e. the signals and expressions, by double clicking or dragging and dropping into the command
line. This process is recommended for avoiding write errors and being able to work faster.

The general rule is: The operation or operand that you double-click in the function tree or signal
tree is inserted at the position of the cursor in the input line.

So as not to lose the overview of complex expressions, the keyboard shortcut <Ctrl>+ can be
used to jump back and forth between associated pairs of parentheses.

Note

The function of applying signals and expressions in the command line is only
available in the expression builder and cannot be used in the normal signal tree
in the signal tree window.

Experienced users can use the input help Intellisense both in the signal table as well as in the
command line of the expression builder. For manual inputs, a window automatically opens with
possible completions of your input. This includes functions and their parameters as well as sig-
nals or virtual expressions which are available in the measuring data file.

By means of cursor control buttons you can select an appropriate entry in the Intellisense win-
dow and take it over by pressing <Return>. If you go on typing the range of suggestions will be
adjusted accordingly until the expression is finished. If this function is used in the expression
builder, all necessary parentheses are also automatically inserted.

2.4	 Diagnostics	/	syntax	error	detection
If you have closed the expression builder by clicking the <OK> button, the expression just creat-
ed is displayed in the corresponding row of the signal definitions.

Although the expression itself is automatically entered as the signal name, you can simply over-
strike it by manually entering a plain text. In the case of more complex, cascaded expressions,
we urgently recommend using names which should be as brief as possible and unambiguous in
order to ensure that the expression is readily understandable.

14 Issue 8.2

Function and use ibaAnalyzer

In the case of a faulty input with the expression builder, an alert will appear that makes it pos-
sible to correct the expression. If <Yes> is clicked, the cursor automatically jumps to the point
where the error is presumably located.

Tip

The function to search for possible errors can also be started manually by press-
ing the keyboard shortcut <Ctrl>+<E> in the expression builder.

If the error message is ignored or the error is made during input in the signal definition line,
ibaAnalyzer indicates this with a red color.

In this way, formal or syntax errors can be detected here that would make a calculation impos-
sible. In order to obtain more detailed information about the cause of the error, the diagnostics
can be opened with a mouse click on the yellow question mark symbol in the respective signal
definition line.

15 Issue 8.2 15

ibaAnalyzer Logical functions

3	 Logical	functions

3.1	 Comparative	operations
e.g. ('Expression1') < ('Expression2')

> Greater
>= Greater or equal
< Smaller
<= Smaller or equal
<> Unequal
= Equal

Description
The comparative operations >, >=, <, <=, <> and = can be used to compare the values of two ex-
pressions (operands) with each other. The result of such an operation is the Boolean value TRUE
or FALSE. Original signals, calculated expressions or constant values can be entered as operands.
The result can be presented and evaluated as a new expression, such as a signal. This way, bina-
ry signals can easily be generated and can then be used as conditions for other functions.

Note

If the crossing point of two curves is located between two measuring points, the
result of the comparative operation of the last two measured values is retained
until the next measuring point. This means that any change from TRUE to FALSE
(or vice versa) is always located at a measuring point. The line which connects
two measuring points in the presentation of analog values is just an approxima-
tion.

16 Issue 8.2

Logical functions ibaAnalyzer

3.2	 Boolean	functions
e.g. ('Expression1') AND ('Expression2')

AND Logical AND
OR Logical OR
XOR Logical exclusive OR
NOT Logical NOT, negation

Description
Binary expressions, such as digital signals, can be linked with each other using the Boolean func-
tions AND, OR, NOT and XOR. According to the rules of Boolean logic, the functions return the
value TRUE or FALSE. Digital signals, calculated (binary) expressions or the numerical values 0 or
1 can be entered as parameters.

The result can be presented and evaluated as a new expression, such as a signal. This way, bina-
ry signals can easily be generated and can then be used as conditions for other functions.

Logical functions, truth table:

A B A AND B A OR B A XOR B NOT A
0 0 0 0 0 1
1 0 0 1 1 0
0 1 0 1 1
1 1 1 1 0

3.3	 Bitwise	Boolean	functions
e.g. ('Expression1') bw_NOT ('Expression2')

bw_AND Bitwise AND
bw_OR Bitwise OR
bw_XOR Bitwise exclusive OR
bw_NOT Bitwise NOT

Description
These functions are used for the bitwise linking of two analog values based on Boolean algebra.
The functions return a 32Bit integer. 32Bit integers are expected as arguments.

If the arguments are not integers, the decimal part will be dropped before the operation is ex-
ecuted. If the arguments are too big so that their absolute value does not fit in a 32Bit integer,
the operation is executed only on the 32 low-order bits.

When linking two analog values with a bw function, the individual bits of both values are logi-
cally linked. The result then is an analog value of the same type with a bit pattern in accordance
with the logical link.

 Issue 8.2 17

ibaAnalyzer Logical functions

Example
For 2 analog values V1 = 15 and V2 = 2, the results are as follows:

Dec. value Bits Hex Result value
Output value V1 15 ...1111 0x0000000F
Output value V2 2 ...0010 0x00000002
V1 bw_AND V2 ...0010 0x00000002 2
V1 bw_OR V2 ...1111 0x0000000F 15
V1 bw_XOR V2 ...1101 0x0000000D 13
bw_NOT (V1) ...0000 0xFFFFFFF0 -16

3.4 Branching

3.4.1 If
If('Condition’,'IF-True’,'IF-False')

Arguments

'Condition' Condition as an operation with the Boolean results TRUE or FALSE
'IF-True' Operation is performed if 'Condition' is TRUE
'IF-False' Operation is performed if 'Condition' is FALSE

Description
The If function can be used for a conditioned execution of further calculations. Depending on
the Boolean result of a 'condition’, which can itself be an operation, the operation ‘IF-True’ will
be executed if the result is TRUE and the operation ‘IF-False’ if the result is FALSE.

Hence, different calculations can be executed in a process-controlled manner. Of course, you
can use this function in a nested matter and thus realize further branches.

Tip

If an analog signal is entered for 'Condition', as a condition it will be checked
whether the value is greater than (TRUE) or less than (FALSE) 0.5.

18 Issue 8.2

Logical functions ibaAnalyzer

3.4.2 Switch

Switch ('Selector_Expression,' 'Case_1_Expression’,'Value_1_Expression,'

'Case_2_Expression’,'Value_2_Expression,'

...

'Case_n_Expression’,'Value_n_Expression,'

'Default_Value_Expr')

Arguments

'Selector_Expression' Expression that is checked for different conditions
'Case_n_Expression' Expression that is compared with ‘Selector_Expression’
'Value_n_Expression' Result if ‘Select_Expression’ and ‘Case_n_Expression’ match
'Default_Value _Expr' Result if none of the ‘Case_n_Expressions’ match with ‘Selector_Ex-

pression’

Description
These instructions compare an incoming ‘Selector_Expression’ with any number of ‘Case_n_Ex-
pressions’ resembling the SQL statement CASE. At least 3 arguments are needed. With an even
number of arguments, the last argument is automatically interpreted as ‘Default_Value_Expr,’
which is used if none of the ‘Case_n_Expressions’ matches with the ‘Selector_Expression’.

If ‘Selector_Expression’ and ‘Case_n_Expression’ match, the corresponding ‘Value_n_Expres-
sion’ is returned. If several ‘Case_n_Expressions’ match the input signal, the first is automatical-
ly selected.

The following signals are allowed as ‘Selector_Expressions:’

■	 A numeric constant

■	 A text constant

■	 An equidistant and not equidistant sampled channel

■	 A text channel

In general, the types of comparison values must match, otherwise the corresponding case is not
selected.

 Issue 8.2 19

ibaAnalyzer Logical functions

3.5	 Edge	Detection

3.5.1 OneShot
OneShot('Expression')

Description
This function returns the result TRUE, if the current measured value of 'Expression' is not equal
to the previous one. It returns the result FALSE, if the current measured value does equal the
previous one.

Tip

The function also works with non-equidistant measuring values.

3.5.2 SetReset
SetReset('Set’,'Reset’,'SetDominant=1')

Arguments

'Set' Positive edge sets function to TRUE
'Reset' Positive edge sets function to FALSE
'SetDominant' Optional parameter (default = 1), which controls which input argument is

dominant if both arguments simultaneously receive a positive edge.
'SetDominant' = 1 Set takes precedence over Reset
'SetDominant' = 0 Reset takes precedence over Set

Description
This function can be used to control a digital result (TRUE/FALSE) with the help of positive edges
(transition from 0 to 1) of the arguments ‘Set’ and ‘Reset’.

A rising edge of the ‘Set’ operand returns a static TRUE. A rising edge of the ‘Reset’ operand re-
sets the result to FALSE. The argument 'SetDominant' is optional and determines the dominance
of ‘Set’ or ‘Reset.’

Tip

For an analog signal, exceeding the value 0.5 corresponds to a positive edge.

20 Issue 8.2

Logical functions ibaAnalyzer

3.6	 Timer	functions	(IEC	61131-3)

TOF
TOF('in','pt')

Description
Off Delay Timer. The output is switched off 'pt' seconds after switching off the 'in' input.

TON
TON('in','pt')

Description
On Delay Timer. The output is switched on 'pt' seconds after switching on the 'in' input.

TP
TP('in','pt')

Description
Pulse Timer. The output is switched on for 'pt' seconds after rising edge at the 'in' input.

Tip

A further rising edge during the output pulse does not extend the output pulse
and does not restart the pulse.

 Issue 8.2 21

ibaAnalyzer Logical functions

3.7 IsData / Coalesce

IsData
IsData('Expression’,'End')

Arguments

'Expression' input signal
'End' Length of the output signal

Description
The result of this operation is TRUE if measured values are available for 'Expression.' The result
is FALSE if measured values are missing or signals are empty. This function, for example, can be
used as condition for other calculations.

Optionally, the 'End' parameter can be entered. With this parameter, you can reduce or extent
the resulting signal of the function so that it complies with other signals and can be used for fur-
ther links. If you do not specify the 'End' parameter, the length of the result signal complies with
that of the input signal (incl. invalid samples).

Coalesce
Coalesce ('Candidate1', ‘Candidate2',...)

Description
Inspired by the corresponding SQL query, the function Coalesce returns the first of its argu-
ments, which contains data.

This may, for example, be used to create a safeguard against missing signals in a data file.

2222 Issue 8.2

Mathematical functions ibaAnalyzer

4	 Mathematical	functions

4.1	 Fundamental	arithmetic	operations

4.1.1	 Fundamental	arithmetic	operations	+,	-,	*,	/
e.g. ('Expression1') + ('Expression2')

Description
All signals and expressions can be processed by fundamental arithmetic operations (addition,
subtraction, multiplication and division). If digital signals or expressions are used as operands in
fundamental arithmetic operations, ibaAnalyzer translates the TRUE values as 1.0 and FALSE as
0.0. The result of a fundamental arithmetic operation is always an analog expression.

4.1.2 Abs
Abs('Expression')

Description
The absolute function returns the absolute value (= |value|) of 'Expression.'

Tip

Interpolated values in the case of a sign change between two samples may differ
in value.

4.1.3 Mod
Mod('Dividend’,'Divider')

Description
This function returns the modulo of 'Dividend' and 'Divider'. Internally, the function uses the
fmod C-function, which permits the use of floating point values for 'Dividend' and 'Divider'.

Modulo r is the remainder of the division divident / divisor so that the following relationship
applies in reverse:

Dividend = Divider * x + r, whereby x is an integer number (integer).

Modulo r always has the same sign as 'Dividend' and the absolute value of r is always smaller
than the absolute value of 'Divider'.

If 'Dividend' < 'Divider', then the function returns the value of 'Dividend'. Mathematically speak-
ing, the remainder can also be described as "Dividend modulo Divider.”

 Issue 8.2 23

ibaAnalyzer Mathematical functions

4.1.4 Ceiling / Floor / Round

Ceiling
Ceiling('Expression')

Description
This function returns the smallest integer value that is greater than or equal to 'Expression’.

Floor
Floor('Expression')

Description
This function returns the largest integer value that is less than or equal to 'Expression’.

Round
Round('Expression')

Description
This function rounds ‘Expression’ up or down to the nearest integer.

24 Issue 8.2

Mathematical functions ibaAnalyzer

4.2	 Integral	and	differential	calculation

4.2.1 Int
Int('Expression’,'Reset')

Arguments

'Expression' Measured value
'Reset' Optional digital parameter, which can be used to reset the integral or suppress

the integration process. ‘Reset’ can be an expression as well.
'Reset' > 0 Integral is reset.
'Reset'= 0 Integration released (default)

Description
This function returns the integral of 'Expression'. The ‘Reset’ parameter can be used for reset-
ting the integral to zero or suppressing the integration process, e.g. to integrate the same signal
for periodical occurrences or reversing processes a number of times. ‘Reset’ can be an expres-
sion as well.

4.2.2	 Diff	/	Dif
Diff('Expression’,'dy'=0)

Description
This function returns the derivative (or the differential) of 'Expression'. If you set the optional
parameter ‘dy’ to True(), only the difference between the measured values is calculated instead
of the differential.

Example
If 'Expression' is a length measuring signal, the Diff function can be used to determine a speed
curve.

 Issue 8.2 25

ibaAnalyzer Mathematical functions

4.3 Powers and square roots

4.3.1 Pow
Pow('Expression1’,'Expression2')

Arguments

'Expression1' Basis
'Expression2' Exponent

Description
This function takes 'Expression1' (basis) to the power of 'Expression2' (exponent).

Example
Calculating some important powers

(2)^0 = Pow(2, 0) = 1

(2)^-2 = Pow(2, -2) = 0.25

(-2)^2 = Pow(-2, 2) = 4

(10)^(lg 2) = Pow(10, lg 2) = 2

(0)^-1 = Pow(0, -1) = +∞ (infinity)

Tip

The increase of 0 to the power of -1 does not yield an error message, but also no
result.

4.3.2 Sqrt
Sqrt('Expression')

Description
This function returns the square root of 'Expression'.

Note

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

26 Issue 8.2

Mathematical functions ibaAnalyzer

4.4	 e	functions	and	logarithms

4.4.1 Exp
Exp('Expression')

Description
This function calculates the expression (e) 'Expression'

4.4.2 Log
Log('Expression')

Description
This function returns the natural logarithm of 'Expression'.

Note

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

4.4.3 Log10
Log10('Expression')

Description
This function returns the decadic logarithm of 'Expression'.

Note

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

4.5 PI
Pi()

Description
The number Pi () is stored as a constant (= 3.1415927...) in the system for various kinds of
calculations. Use this function to insert the number into your calculation.

 Issue 8.2 27

ibaAnalyzer Mathematical functions

4.6 Sum
Sum('Expression’,'Reset'=0)

Description
This operation summarizes all signal values of a function point by point. If the summation is in-
terrupted by a reset value, then the summation starts again.

Example
The summation starts with the signal value 10 + 9 + 8 + …6. Here, 'reset' = TRUE causes an inter-
ruption and the function is reset to zero. After that, the summation starts again.

28 Issue 8.2

Mathematical functions ibaAnalyzer

4.7	 Trigonometric	functions
e.g. Sin ('Expression')

Sin('Expression') This function returns the sine of 'Expression' in rad.
Cos('Expression') This function returns the cosine of 'Expression' in rad.
Tan('Expression') This function returns the tangent of 'Expression' in rad.
Asin('Expression') This function returns the arcsine of 'Expression' in rad.
Acos('Expression') This function returns the arccosine of 'Expression' in rad.
Atan('Expression') This function returns the arctangent of 'Expression' in rad.
Atan2 ('X,' 'Y') This function returns the arctangent of ‘Y/X’.

Description
The standard functions and the related inverse functions are available for various calculations in
which trigonometric functions are needed, for example, the calculation of power in three-phase
AC systems.

Example
Visualization of trigonometric functions:

29 Issue 8.2 29

ibaAnalyzer Statistical functions

5	 Statistical	functions
ibaAnalyzer supports the calculation of miscellaneous statistical functions. Four different ver-
sions are available for each function in a normal case:

■	 The standard function always calculates the corresponding size across the entire signal

■	 The suffix InTime indicates that the corresponding size is formed over intervals of a specified
length

■	 The suffix Valid is used to calculate the corresponding size over intervals, which are marked
with a binary signal

■	 The prefix M indicates that the corresponding size is formed over moving intervals of a speci-
fied length

5.1	 Average	(Avg)

Avg
Avg('Expression')

Description
This function returns the average of 'Expression'. It is displayed as a constant value (horizontal
line) in the signal strip.

30 Issue 8.2

Statistical functions ibaAnalyzer

AvgInTime
AvgInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the average is formed
'Interval' Specification of the interval length

Description
This function returns the average value of 'Expression' per time segment of the length 'interval'.

MAvg
MAvg('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the average is formed
'Interval' Specification of the length of the interval used to form the average

Description
This function returns its result as the floating arithmetic average of 'Expression' calculated over
a moving interval of length ‘interval’.

Tip

Using these functions, signals and expressions that are not time-based, i.e. which
have the basis length, frequency or 1/length, can also be processed. Instead of
seconds, the X-axis range should then be entered in m, Hz or 1/m corresponding
to the base.

AvgValid
AvgValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the average is formed
'Valid' Control signal

Description
This operation returns the average of 'Expression' for the interval (time or length) where a relat-
ed control signal is TRUE.

 Issue 8.2 31

ibaAnalyzer Statistical functions

5.2	 Maxima	(Max)

Max
Max('Expression')

Description
This function returns the maximum value of 'Expression'. It is displayed as a constant value (hor-
izontal line) in the signal strip.

Max2
Max2('Expression1',‘Expression2')

Description
This function returns the maximum of two signals, 'Expression1' and 'Expression2'. The two sig-
nals are compared measured value by measured value, with the larger value in each case being
presented as the result.

MaxInTime
MaxInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the maximum is formed
'Interval' Length of the interval over which the maximum should be calculated.

32 Issue 8.2

Statistical functions ibaAnalyzer

Description
This function returns the maximum value of 'Expression' within each interval of the length 'in-
terval'. Signals and expressions being time-based ("interval" in seconds) or length-based ("inter-
val" in meters) can be processed.

MaxValid
MaxValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the maximum is formed
'Valid' Control signal

Description
This operation returns the maximum of 'Expression' for the interval (time or length) where a
related control signal is TRUE.

MMax
MMax ('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the maximum is formed
'Interval' Length of the interval over which the maximum should be calculated

Description
This function returns the maximum of ‘Expression’ within a floating X-axis interval of the length
‘interval’, advancing by one measuring point in each case.

 Issue 8.2 33

ibaAnalyzer Statistical functions

5.3	 Minima	(Min)

Min
Min('Expression')

Description
This function returns the minimum value of the 'Expression' signal. It is displayed as a constant
value (horizontal line) in the signal strip.

Min2
Min2('Expression1',‘Expression2')

Description
This function returns the minimum of two signals, 'Expression1' and 'Expression2'. The two
signals are compared measured value by measured value, with the smaller value in each case
being presented as the result.

MinInTime
MinInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the minimum is formed
'Interval' Length of the interval over which the minimum should be calculated.

Description
This function returns the minimum value of 'Expression' within each interval of the length 'inter-
val'. Signals and expressions being time-based ("interval" in seconds) or length-based ("interval"
in meters) can be processed.

34 Issue 8.2

Statistical functions ibaAnalyzer

MinValid
MinValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the minimum is formed
'Valid' Control signal

Description
This operation returns the minimum of 'Expression' for the interval (time or length) where a re-
lated control signal is TRUE.

MMin
MMin('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the minimum is formed
'Interval' Length of the interval over which the minimum should be calculated

Description
This function returns the minimum of ‘Expression’ within a floating X-axis interval of the length
‘interval’, advancing by one measuring point in each case.

5.4	 Standard	deviation	(StdDev)

 Issue 8.2 35

ibaAnalyzer Statistical functions

StdDev
StdDev('Expression')

Description
This function returns the standard deviation of 'Expression' .

The standard deviation is calculated by the following formula:

MStdDev
MStdDev('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the standard deviation is formed
'Interval' Length of the interval over which the standard deviation should be calculated.

Description
This function returns the moving standard deviation of 'Expression' over each time interval of
the length 'Interval'. Signals and expressions being time-based ("interval" in seconds) or length-
based ("interval" in meters) can be processed.

StdDevInTime
StdDevInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the standard deviation is formed
'Interval' Length of the interval over which the standard deviation should be calculated.

Description
This function returns the standard deviation of 'Expression' over each time interval of the length
'Interval'.

Note

The result of the StdDevInTime function is always specified for the previous in-
terval.

36 Issue 8.2

Statistical functions ibaAnalyzer

StdDevValid
StdDevValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the standard deviation is formed
'Valid' Control signal

Description
This function returns the standard deviation of 'Expression' for the interval (time or length)
where a related control signal is TRUE.

 Issue 8.2 37

ibaAnalyzer Statistical functions

5.5	 Percentile

Percentiles
Percentile('Expression','p'=0.5)

Arguments

'Expression' Measured value for which the percentile is formed
'p' The percentile

Description
This function returns the ‘p’-th percentile of ‘expression’.

The ‘p’th percentile is the smallest value of a set of measured values which is greater than p%
of the number of values measured. A typical percentile is the 50% percentile, the so-called me-
dian. The median divides the set of values measured into two equal halves: 50% of all values
measured are smaller than the median value, the remaining 50% are greater than or equal to it.
Further typical percentiles are 25% and 75% which, together with the median, enable the divi-
sion of a set of values measured into four groups, the so-called quartiles. (< 25%, <50%, <75%,
≥75%).

The "Percentile" function determines the percentile value of the total number of measuring
points of a signal. The percentile 'p' must be entered as a decimal value, i.e.:

 � 50 % --> p = 0.5 (default value)

 � 75 % --> p = 0.75

 � 95.9 % --> p = 0,959

This function is, for example, particularly useful when it comes to assessing the quality of a
product where a particular property must comply with a defined classification.

PercentileValid
PercentileValid('Expression’,'Valid’,'p'=0.5)

Arguments

'Expression' Measured value for which the percentile is formed
'Valid' Specification of the interval used to form the percentile
'p' The percentile

Description
This function returns the percentile of 'Expression' for every interval (time or length) for which a
related control signal 'Valid' is TRUE.

38 Issue 8.2

Statistical functions ibaAnalyzer

PercentileInTime
PercentileInTime('Expression’,'Interval’,'p'=0.5)

Arguments

'Expression' Measured value for which the percentile is formed
'Interval' Specification of the interval size used to form the percentile
'p' The percentile

Description
This function returns the percentile of 'Expression' over each time interval of the length 'Inter-
val'.

MPercentile
MPercentile('Expression’,'Interval’,'p'=0.5)

Arguments

'Expression' Measured value for which the percentile is formed
'Interval' Specification of the moving interval used to form the percentile
'p' The percentile

Description
This function returns the moving percentile of 'Expression' over each interval of the length 'In-
terval'. Signals and expressions being time-based ("interval" in seconds) or length-based ("inter-
val" in meters) can be processed.

 Issue 8.2 39

ibaAnalyzer Statistical functions

5.6	 Correlation	and	covariance	(Correl,	CoVar)

Correl
Correl('Expression1’,'Expression2')

Arguments

'Expression1/2' Measured values that are calculated for the correlation coefficient

Description
This function calculates the correlation coefficient between ‘Expression1’ and ‘Expression2.’ The
entire recording length is taken into account. The function returns a constant value.

Mcorrel
Mcorrel('Expression1',‘Expression2’,'Interval')

Arguments

'Expression1/2' Measured values that are calculated for the correlation coefficient
'Interval' Specification of the interval used to form the correlation coefficient

Description
This function calculates the correlation coefficient between ‘Expression1’ and ‘Expression2’ over
floating intervals of the length 'interval' measured in s, m, Hz or 1/m.

CoVar
CoVar('Expression1',‘Expression2')

Arguments

'Expression1/2' Measured values that are calculated for the covariance

Description
This function calculates the covariance between ‘Expression1’ and ‘Expression2.’ The entire re-
cording length is taken into account. The function returns a constant value.

MCoVar
MCoVar('Expression1’,'Expression2’,'Interval')

Arguments

'Expression1/2' Measured values that are calculated for the covariance
'Interval' Specification of the interval used to form the covariance

Description
This function calculates the covariance between ‘Expression1’ and ‘Expression2’ over floating
intervals of the length 'interval' measured in s, m, Hz or 1/m.

40 Issue 8.2

Statistical functions ibaAnalyzer

5.7 Kurtosis
The calculation of the kurtosis is used e. g. for the evaluation and analysis of vibrations. It serves
to determine the number of outliers within an vibration signal.

In mathematical terms, the kurtosis is a measure for the relative "flatness" of a distribution
(compared to the normal distribution which has a kurtosis of zero). A positive kurtosis indicates
a tapering distribution (a leptokurtic distribution), whereas a negative kurtosis indicates a flat
distribution (platykurtic distribution).

This statistical method is particularly suitable for analyzing random or stochastic signals, e. g. in
terms of condition-based maintenance (condition monitoring) when analyzing vibrations.

For characterizing the signal curve, methods of probability density or frequency are used. It is
assumed that a noise signal with a Gaussian amplitude distribution can be measured in ma-
chines in good order after filtering out, e. g., rotational frequency vibration components. In
the event of damage, individual pulse signals interfere with this signal, altering the distribution
function. By choosing suitable characteristic values such as the crest factor or the kurtosis factor,
the machine condition can be evaluated.

If regularly measured, these methods offer an overview of the machine status. However, the
disadvantage is that after they increase the characteristic values decrease again. The reason for
this is that the number of pulse signals increases with progressive damage. This in turn influenc-
es the effective value but barely effects the peak value.

Modifications of the time signal caused by shock pulses induce a change in the resulting distri-
bution function. Thus, damages with a distinctly discrete nature can cause the kurtosis factor to
increase sharply. Its absolute value thus allows statements on a damage.

The calculation of the kurtosis is similar to the calculation of the standard deviation 'StdDev'.

 Issue 8.2 41

ibaAnalyzer Statistical functions

Kurtosis
Kurtosis('Expression')

Arguments

'Expression' Measured value, for which the kurtosis is formed

Description
This operation returns the kurtosis of the selected time signal.

KurtosisInTime
KurtosisInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the kurtosis is formed
'Interval' Length of the interval over which the kurtosis should be calculated.

Description
With this operation, the selected expression is divided into equal-duration intervals of the
length 'Interval’. For these intervals, the kurtosis is subsequently calculated.

MKurtosis
MKurtosis('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the kurtosis is formed
'Interval' Specification in seconds of the length of the interval over which the kurtosis

is formed

Description
This operation calculates the kurtosis of 'expression' over a floating X axis interval of fixed length
'interval'.

KurtosisValid
KurtosisValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the kurtosis is formed
'Valid' Control signal

Description
This operation describes the kurtosis for those intervals in which a related control signal is
TRUE.

42 Issue 8.2

Statistical functions ibaAnalyzer

5.8	 Skewness
Like the kurtosis factor, the skewness factor can be used for evaluating and analyzing vibrations.
The skewness factor can be used if the symmetrical properties of a vibration signal are to be
checked.

In mathematical terms, this is the evaluation of the skewness of a distribution function. A distri-
bution is called positive (and/or negative) if the lion's share of the distribution is concentrated
on the left (and/or right) side. The skewness level is defined by the third moment of the distri-
bution.

The calculation of the skewness is similar to the kurtosis and standard deviation functions:

Skewness
Skewness('Expression')

Description
This operation returns the skewness of the selected time signal ‘Expression’.

SkewnessInTime
SkewnessInTime('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the skewness is formed
'Interval' Length of the interval over which the skewness should be calculated.

Description
With this operation, the selected expression is divided into equal-duration intervals of the
length 'Interval’. For these intervals, the skewness is subsequently calculated.

 Issue 8.2 43

ibaAnalyzer Statistical functions

MSkewness
MSkewness('Expression’,'Interval')

Arguments

'Expression' Measured value, for which the skewness is formed
'Interval' Length of the moving interval over which the skewness should be calculated.

Description
This operation calculates the skewness of 'Expression' over a floating X axis interval of length
'interval'.

SkewnessValid
SkewnessValid('Expression’,'Valid')

Arguments

'Expression' Measured value, for which the skewness is formed
'Valid' Control signal

Description
This operation computes the skewness over those intervals in which a related control signal is
TRUE.

4444 Issue 8.2

Counting and sorting ibaAnalyzer

6	 Counting	and	sorting

6.1 Count
Count('Expression’,'Level'=0.5, 'Hysteresis'=0, 'EdgeType'=1, 'Reset'=0)

Arguments

'Expression' Measured value
'Level' Specification of the level value
'Hysteresis' Specification of a hysteresis band
'EdgeType' Indication of whether rising, falling or rising and falling edges should be counted

'EdgeType' <0 only falling edges (leaving out hysteresis band in the nega-
tive direction)

'EdgeType' >0 only rising edges (leaving out hysteresis band in the posi-
tive direction)

'EdgeType' = 0 falling and rising edges
'Reset' Optional digital parameter that can be used to reset the counter. ‘Reset’ can be

an expression as well.
'Reset' > 0 Counter is reset.
'Reset' = 0 Counter value is retained / continues to count (default)

Note

The 'Reset' condition must not be related to the count function itself.

Description
The function counts the crossings of 'Expression' through 'Level'.

The 'Hysteresis' parameter can be used to define a tolerance band which is above and below
'Level' by equal amounts. Only complete crossings through the tolerance band are counted.

The 'EdgeType' parameter determines which kind of edges are counted. The 'Reset' parameter
is used to reset the counter value to 0. 'Reset' can also be formulated as an expression.

Example
If you choose 2.5 for 'Level' and 2.0 for 'Hysteresis,' level crossings in the ascending direction are
not counted until 'Expression' is > 3.5 and in the descending direction until 'Expression' is < 1.5.

 Issue 8.2 45

ibaAnalyzer Counting and sorting

Tip

The count function can also be used for binary signals. For this purpose, choose
0.5 for ‘Level’ and, for example, 0.1 for ‘Hysteresis’. This then means that all
changes from FALSE to TRUE and vice versa will be detected and counted.

46 Issue 8.2

Counting and sorting ibaAnalyzer

6.2 CountSamples
CountSamples('Expression’,'Reset'=0)

Arguments

'Expression' Measured value for which the number of signal points is determined
'Reset' Optional digital parameter, which can be used to reset or suppress the counting

process. ‘Reset’ can be an expression as well.

'Reset' > 0 counting process is reset.

'Reset' = 0 counting process released (preference)

Description
With this function, the number of the individual signal points can be determined regardless of
whether the signal points are equidistant or not. Invalid samples are not counted. If the input
signal is invalid, the constant value 0 is supplied as the result.

Tip

This function can also be used in combination with XMarkValid (see XMark func-
tions ì XMarkRange / XMarkValid, page 54) for example.

6.3 Sort
Sort('Expression’,'Descending'=0)

Arguments

'Expression' Measured value for which the samples are sorted
'Descending' Optional digital parameter for reversing the sorting sequence

Description
This function sorts all samples of a curve ('expression') by their values in ascending order from
left to right.

Preference: Sorting in ascending order (‘descending’=FALSE). If the samples are to be sorted in
descending order from left to right, TRUE has to be set as the second operand.

47 Issue 8.2 47

ibaAnalyzer Time / length functions

7	 Time	/	length	functions

7.1 Convert and resample

7.1.1 ConvertBase
ConvertBase('Expression’,'From,’To')

Arguments

'Expression' Measured value for which the base should be modified
'From'/‘To' Setup of the base that is to be switched from or to.

0 = time

1 = length

2 = frequency

3 = inverse length

Description
This operation converts an expression from one base into another base. No physical conversion
or scaling is carried out.

This function can be used to change the reference value of a signal. This can be advantageous if
length-based reference values are used for additional calculations. The existing signal, however,
is only time-based.

7.1.2 Resample
Resample('Expression’,'Basis’,'interpolate'=1)

Arguments

'Expression' Measured value that is to be resampled
'Base‘ New sampling rate of the result
'interpolate' Optional parameter to prevent the automatic interpolation for the new mea-

sured values

Description
This operation returns the signal trend of 'Expression' on a new time basis. The momentary val-
ues are transferred from the original curve temporally correct in line with the new time basis,
so that the length of the new curve is practically the same. The function can also be used for
length-based signals. In this case, the value of a distance must be entered in m rather than a
time span.

Tip

A curve can be graphically smoothed if a larger time basis is used in the resample
function because fewer points are connected to each other. The values are not
averaged.

48 Issue 8.2

Time / length functions ibaAnalyzer

7.1.3 SampleAndHold
SampleAndHold('Expression’,'Sample’,'Initial'=0)

Arguments

'Expression' Measured value
'Sample' Parameter that determines whether the function follows the measured value (1)

or holds the last measured value (0). 'Sample' can be a condition itself or be de-
termined by a different function.

'Initial' Optional parameter (default = 0), which determines the initial value of the func-
tion when 'Sample' is inactive at the start of the measurement.

Description
This function is a sample-hold function. The output follows 'Expression' when 'Sample' = TRUE.
It remains unchanged when ‘Sample’ = FALSE. With the optional 'Initial' parameter, the initial
value of the output can be specified if the function is on "Hold" when called.

7.1.4 SampleOnce
SampleOnce('Expression','Sample')

Arguments

'Expression' Measured value
'Sample' Digital signal whose rising edges determine the sampling points

Description
This function resamples an 'Expression' input signal at individual points determined by the rising
edges of the 'Sample' digital signal. The result has one measuring point per rising edge and is
invalid in the ranges in between.

Example
This function can be used to display a phase sensor (keyphasor) signal in the time domain.
Whenever the phase sensor jumps to 'TRUE', the original signal is sampled. By overlaying both
representations, the times of the phase sensor are suitably represented. In the example below,
a 180° phase shift can be detected when passing a resonance.

The following illustration shows the SampleOnce function applied to a vibration signal.

 Issue 8.2 49

ibaAnalyzer Time / length functions

7.2 Time

7.2.1 Time
Time('Count’,'Basis')

Arguments

'Count' Number of measuring points to be created
'Base‘ Sampling rate of the result

This function returns a linear, time-proportional signal with a number of ‘Count’ values at a dis-
tance of 'base.’ The timebasis is stated in seconds. The time values are entered both on the X
axis and on the Y axis.

Note

It is not necessary to load a data file as a precondition for using the time func-
tion.

50 Issue 8.2

Time / length functions ibaAnalyzer

7.2.2 AbsoluteTime
AbsoluteTime('Time','DoSync'=0)

Arguments

'Time' Relative time that is to be converted
'DoSync' Optional parameter that determines whether the absolute time should be

aligned with the starting time of the currently displayed time axis.

Description
This function transforms the relative time information ‘Time’ (e.g. generated with XFirst, XLast
or XValues) into absolute time. A vector with constant or varying entries is returned here de-
pending on whether the input time is constant or not. The optional binary parameter ‘DoSync’
determines whether the result is to be aligned with the starting time of the currently displayed
time axis.

The result is a vector with the following entries, which can be read out with GetRows:

 � Index 0: milliseconds

 � Index 1: seconds

 � Index 2: minutes

 � Index 3: hours

 � Index 4: day of the month

 � Index 5: month

 � Index 6: year

 � Index 7: day of the year

 � Index 8: Weekday (1=Monday, 2=Tuesday, …, 7=Sunday)

7.3	 Conversion	from	time	to	length	reference

TimeToLength
TimeToLength('Expression’,'Speed’,'Precision')

Arguments

'Expression' Expression that is to be converted to length
'Speed' Speed signal
'Precision' Optional parameter that determines the sampling rate of the result in m.

Description
This function converts the time-related measuring value 'Expression' into a length-related value,
with the speed of the measuring object 'Speed' serving as the speed vector [m/s].

This function can be used to convert any measuring value for which a matching speed measur-
ing value is available into a length-related presentation. This means that it is possible to present
not just the relationship between measuring value and time but also between measuring value
and distance traveled. Taking the example of a steel strip in a rolling mill, this function is used to

 Issue 8.2 51

ibaAnalyzer Time / length functions

determine the distribution of measured values over the strip length. On condition that the pro-
cess was designed in such a manner that the beginning and end of measurement are in exact
conformity with the head and tail ends of the strip, this function can then also be used to calcu-
late the total length of the strip. The largest length value determined is entered as the scale end
value of the X axis (autoscale).

'Precision' is an optional parameter in [m]. If no precision value is defined, the points for the
length-related curve are calculated and entered in the signal strip on the basis of the number
of measuring points of the original signal. If a precision value is defined, for example, 0.1, a new
length-related value is calculated and entered as a point of the curve every 0.1 m.

The following illustration shows Time / length functions TimeToLength.

TimeToLengthL
TimeToLengthL('Expression’,'Length’,'Precision')

Arguments

'Expression' Expression that is to be converted to length
'Length' Length signal
'Precision' Optional parameter that determines the sampling rate of the result in m.

Description
This function converts the time-related measuring value 'Expression' into a length-related value,
with a length measuring value 'Length' as the position [m].

The explanations given under TimeToLength apply analogously, however, with the only differ-
ence that a suitable length or position measuring value is used instead of the speed.

5252 Issue 8.2

X-axis operations ibaAnalyzer

8	 X-axis	operations

8.1	 Shift	along	the	X	axis
The following illustration shows time / length functions: shift left (red) / right (green).

Shl
Shl('Expression’,'Distance')

Arguments

'Expression' Expression that should be moved
'Distance' Distance in seconds or meters for length-related signals

This operation returns a signal curve which is shifted by 'Distance' to the left on the X axis com-
pared to the original signal. Otherwise, the values measured remain unchanged. The function
can be used for time-based signals ('Distance' in seconds) as well as for length-based signals
('Distance' in meters).

Shr
Shr('Expression’,'Distance')

Arguments

'Expression' Expression that should be moved
'Distance' Distance in seconds or meters for length-related signals

This operation returns a signal curve which is shifted by 'Distance' to the right on the X-axis
compared to the original signal. Otherwise, the values measured remain unchanged. The func-
tion can be used for time-based signals ('Distance' in seconds) as well as for length-based signals
('Distance' in meters).

 Issue 8.2 53

ibaAnalyzer X-axis operations

8.2 XCutRange / XCutValid

XCutRange
XCutRange('Expression’,'Start’,'End')

Arguments

'Expression' Expression from which a part is to be cut out
'Start' Start of the selected range in seconds or meters
'End' End of the selected range in seconds or meters

Description
This function can be used to cut out a part of a curve. The function can be applied both to
time-related and to length-related signal strips. The 'Start' and 'End' parameters, entered in [s]
or [m], define the beginning and end of the segment to be cut out.

The cut out part is moved to the beginning of a separate trend view. However, since the X axis
(time or length) remains unchanged, the correct time or length reference of the values mea-
sured is no longer given.

XCutValid
XCutValid('Expression’,'Valid')

Arguments

'Expression' Expression from which a part is to be cut out
'Valid' Binary signal that describes the selected range

Description
This function cuts out all the measuring points of a signal trend 'Expression' depending on a
'Valid' condition if this condition supplies the value TRUE. The function can be applied to both
time-related and length-related signals. The 'Valid' parameter is a Boolean expression. This can
be a digital input signal, the result of a comparative operation, or any other binary expression.
Measuring points for which the condition is FALSE are not taken over.

The parts cut out are placed, one after another, at the beginning of a new signal strip.

54 Issue 8.2

X-axis operations ibaAnalyzer

8.3	 XMarkRange	/	XMarkValid

XMarkRange
XMarkRange('Expression’,'Start’,'End')

Arguments

'Expression' Expression from which a part is to be selected
'Start' Start of the selected range in seconds or meters
'End' End of the selected range in seconds or meters

Description
This function can be used to cut out part of a curve in a manner similar to the XCutRange func-
tion. The function can be applied both to time-related and to length-related signal strips. The
'Start' and 'End' parameters, entered in [s] or [m], define the beginning and end of the segment
to be cut out. The part cut out is displayed in a separate signal strip, however, it also continues
to be displayed in the original position on the time or position axis, whilst the measuring points
outside the specified range are discarded.

XMarkValid
XMarkValid('Expression’,'Valid')

Arguments

'Expression' Expression from which a part is to be selected
'Valid' Binary signal that describes the selected range

Description
This function cuts out – in a manner similar to the XCutValid function - all the measuring points
of a signal trend 'Expression' depending on a 'Valid' condition if this condition supplies the value
TRUE. The function can be applied both to time-related and to length-related signal strips. The
'Valid' parameter is a Boolean expression. This can be a digital input signal, the result of a com-
parative operation, or any other binary expression. Measuring points for which the condition is
FALSE are discarded. The parts cut out are displayed in a new signal strip, retaining their X posi-
tions.

 Issue 8.2 55

ibaAnalyzer X-axis operations

Tip

The XMarkValid function is particularly suitable, for example, to highlight limit
value violations by using different colors in a signal trend by showing the result
signal in the same strip and on the same Y-axis as the original signal. By choosing
different colors, the limit-value violation ranges can be clearly identified.

Example: Values within the tolerance range = blue; values out of tolerance = red.

8.4 XMirror / XStretch / XStretchScale

XMirror
XMirror('Expression')

Description
This function can be used to mirror a complete graph (exchanging the beginning and end). The
graph is mirrored around the vertical central axis of the entire signal graph. The function can be
applied both to time-related and to length-related signal strips.

In this way, measuring graphs of reversing processes (direction reversal) can be compared more
easily. In rolling mills, for example, the head and tail end of the strip can be exchanged during
(even) reversing passes in order to graphically neutralize the direction reversal. However, in or-
der to compare several passes to each other, the corresponding measured values must first be
cut out of the original signal using the XCutValid function, so that these values can be individual-
ly mirrored and subsequently placed on top of each other.

56 Issue 8.2

X-axis operations ibaAnalyzer

The above picture shows the different results of the mirroring operation, depending on whether
the segment to be mirrored was previously cut out using XMarkValid (red) or XCutValid (green).

XStretch
XStretch('Expression’,'ReferenceExpression')

Description
This function can be used to graphically stretch the curve of a signal to the same (final) length
of another signal. The function can be applied both to time-related and to length-related signal
strips.

In this way, it is, for example, possible to correlate measured values of a rolled strip from the
roughing mill to those from the finishing mill or to compare the individual passes of a reversing
mill to each other.

 Issue 8.2 57

ibaAnalyzer X-axis operations

In the above picture, the rolling force curve of the first pass (blue curve) is stretched to the final
length corresponding to the ninth pass.

XStretchScale
XStretchScale('Expression’,'Scale')

Description
With this function, the curve of a signal can be stretched by a specified factor. The scaling factor
is also used if the curve is already provided with an offset.

58 Issue 8.2

X-axis operations ibaAnalyzer

8.5 XFirst / XLast / XNow

XFirst
XFirst('Expression’,'Skip=0’,'SkipInitialEdge=FALSE')

Arguments

'Expression' (Boolean) input signal
'Skip' Optional for skipping the first rising edges
'SkipInitialEdge' Decides whether the first sample is counted as a rising edge if it is TRUE

Description
This function returns a value on the X-axis (time [s] or position [m]) for which the "Expression' is
TRUE for the first time. This means that ‘expression' must be a Boolean quantity. This can be a
digital input signal, the result of a comparative operation, or any other binary expression.

XLast
XLast ('Expression’,'Skip’=0,'SkipFinalEdge=FALSE')

Arguments

'Expression' (Boolean) input signal
'Skip' Optional for skipping the last falling edges
'SkipFinalEdge' Decides whether the last sample is counted as a falling edge if it is TRUE

Description
This function returns a value on the X-axis (time [s] or position [m]) for which the "Expression'
is TRUE for the last time. This means that ‘expression' must be a Boolean quantity. This can be a
digital input signal, the result of a comparative operation, or any other binary expression.

XNow
XNow()

Description
This function returns the relative time since the last start of ibaAnalyzer.

8.6 XSize / XSumValid

XSize
XSize ('Expression')

Description
This function returns the total length of ‘expression' in units of the X-axis (time in [s] or position
in [m]). The result is at a constant value of 0 if the input signal is invalid.

 Issue 8.2 59

ibaAnalyzer X-axis operations

XSumValid
XSumValid ('Expression')

Description
This function can be used to determine the duration or length for which the condition ‘Expres-
sion' is TRUE. Any measuring points for which the condition is not true (FALSE) are disregarded
in the calculation. This means that ‘expression' must be a Boolean quantity. This can be a digital
input signal, the result of a comparative operation, or any other binary expression.

The result is at a constant value of 0 if the input signal is invalid.

8.7 XValues / YValues

XValues
XValues('Expression')

Description
This function returns the X values for every sample of an expression . What makes this function
special is that it will also work on signals or expressions which are not time-based, i.e. length-
based (m), frequency-based (Hz) or inverse length-based (1/m).

With a usual time- or length continuous signal, it will return a rising straight line, writing the
time or length values along the Y-axis in base units (s, m). The function also works with not equi-
distant measured values.

YValues
YValues('Expression’,'TimeBase'=1)

Arguments

'Expression' Input signal
'TimeBase' Time base of the output signal

Description
This function returns the Y-values for all measured values of an expression. Regardless of wheth-
er the input signal is sampled equidistant or not, the result is an equidistant signal with the time
base ‘TimeBase.’

The specification of the time base is optional and ‘TimeBase’=1 is used as the default value.

60 Issue 8.2

X-axis operations ibaAnalyzer

8.8 VarDelay
VarDelay('Expression’,'Delay')

Arguments

'Expression' input signal
'Delay' Time delay in seconds

Description
This operation returns the 'Expression' delayed by a time constant ‘Delay’.

8.9 XY
XY('Expression1’,'Expression2’,'Precision')

Arguments

'Expression1' Input signal containing the X-values of the new signal
'Expression2' Input signal containing the Y-values of the new signal
'Precision' Optional parameter for specifying the sampling rate of the output signal

Description
This function is used if the result from the X-Y visualization is to be used for additional opera-
tions. After the selection, the signals of the X and Y axis are assigned to the function.

Please note that in the resulting function, the distances between the signal points are not the
same as the distances of the original signals. Also the distance between the signal points is
different. With the 'Precision' parameter, a fixed distance between the signal points can be de-
termined. If no parameter is entered, the shortest distance of the signal points is used as fixed
value for all subsequent operations.

 Issue 8.2 61

ibaAnalyzer X-axis operations

8.10	 XMarker1	/	XMarker2
XMarker1 () and/or XMarker2 ()

Description
This function returns the position of the marker X1 and/or X2 on the X axis.

8.11	 XBase	/	XOffset

XBase
XBase('Expression')

Description
This function is used to determine the recording time base and length and frequency-based dis-
tances between the samples, respectively. In case of an equidistantly sampled signal, the func-
tion provides the distance between two samples in X axis units.

If the samples of a signal do not have the same distance, the distance will be displayed in X axis
units which would be determined when re-sampling on equidistant samples. By default, this is
the smallest distance between two samples of the signal.

XOffset
XOffset('Expression')

Description
This function provides the interval of the first sample of a signal from the beginning of the data
file in seconds. The result is negative if the signal starts earlier and positive if it starts later.

If several data files are opened at the same time and the "Synchronize files on recording time"
option is enabled, the offset is necessarily not determined with reference to the start of the
data file of the selected signal, but to the start of the data file having the earliest starting time.

8.12 FillGaps
FillGaps('Expression')

Description
The function FillGaps can be used to fill gaps in a signal 'expression’ through linearly interpolat-
ed entries.

This function is especially useful when gaps are created by NULL entries during trend queries
from a database.

62 Issue 8.2

X-axis operations ibaAnalyzer

8.13	 XAlignFft
XAlignFft('Expression_fixed','Expression_shift’,'Start’,'End’,'MinScale’,
'MaxScale’,'scale’,'type')

Arguments

'Expression_fixed' Expression that serves as a reference
'Expression_shift' Expression that is adjusted to the reference
'Start'
'End'
'MinScale' The smallest x scaling factor to be checked
'MaxScale' The biggest x scaling factor to be checked
'scale'
'type'

Description
With this function, length-based signals with the same physical significance which were mea-
sured in different places in the process can be aligned to each other.

Some parameters are described in more detail below.

■	 'Expression_fixed'

A thickness measurement being considered "fixed" in the course of an algorithm, i.e. not scal-
able or shiftable. This should be the thickness measurement containing the profile of the other
measurement. (In the hot strip-cold strip comparison, this would be the hot strip)

■	 'Expression_shift'

The result of the alignment later refers to this thickness measurement. Thus, this measurement
has to be scaled and shifted with the result values.

■	 'Start'

The interval from Start to End indicates the X-intercept where the measurement 'Expres-
sion_fixed' can be moved. The zero here is the zero of the expression. Also negative values are
permitted. If, compared to "Expression_fixed,' the measurement 'Expression_shift' is allowed to
protrude 10 axis units on the left-hand side in the ibaAnalyzer, then the following must apply:
Start = -10 .

■	 'End'

Specifies the end of the interval just described. It is recommended to select this end dependent
on the length of 'Expression_fixed.' So, for example, End = XSize([Expression_fixed]) or
End = 1.2 * Xsize([Expression_fixed]) if an surplus of 20 percent is allowed.

■	 'scale'

By means of this parameter, the ratio between precision and speed can be controlled. The
smaller the value, the slower and more reliable the algorithm works. The higher the value, the
more the algorithm is accelerated by a heuristic. In case of too high values for 'scale,’ this can
lead to a wrong result. For an optimal result, it is recommended to transfer the resolution of the
measuring data. If, the samples have a distance of 10 cm, for example, scale = 0.1. If the calcula-
tion of results takes too long, the value can be revised upwards.

63 Issue 8.2 63

ibaAnalyzer Vector operations

9	 Vector	operations
Vector operations extend the analysis options for two-dimensional signals.

Vectors, in previous descriptions often referred to as arrays, can be created in different ways:

■	 By grouping several signals in ibaPDA and marking the group as "vector"

■	 By arranging several signals in the logical signal definitions in ibaAnalyzer

■	 As result of various calculation functions, e. g. FFT functions

In ibaAnalyzer, vectors can be displayed in 2D top view and 3D view. The vector operations in
the expression builder serve the use of vector data for further calculations.

Other	documentation

You will find extensive notes on these visualizations and their settings in the
ibaAnalyzer manual, part 2, types of visualization.

9.1 GetFirstIndex / GetLastIndex
GetFirstIndex('Condition') and/or GetLastIndex('Condition')

Description
These functions return the index of the first or last channel in the vector for which the condition
‘Condition’ is true. The vector itself should be an operand of ‘Condition.’ If ‘Condition’ is false
for all channels of the vector, the function returns -1.

9.2 GetRows
GetRows('Vector’,'StartIndex’,‘Counter’,'Step')

Arguments

'Vector' Vector from which the individual entries are to be read out
‘StartIndex’ First index from which the entries are to be read out
'Counter' Number of entries
'Step' Step size

Description
This function extracts rows of values from an array. A total number ‘Counter’ of entries is read
out based on a ‘StartIndex’ (the smallest possible index is 0) in steps of the size ‘Step.’

64 Issue 8.2

Vector operations ibaAnalyzer

9.3 GetZoneCenters
GetZoneCenters('Vector')

Description
This function determines the position of the center of the zone on the Y axis for each zone of
the vector. The only argument of the function is the vector. The result is a vector with a number
of values in accordance with the number of zones.

Example
The GetZoneCenters function is particularly helpful if it is applied to the result of an FftInTime
function. The FftInTime function returns a vector with n "zones" as its result which comply with
the frequency bands (bins). With the GetZoneCenters function, the center frequencies of the
individual bands of the spectrum and thus the frequency vector can be determined. This allows
you to differentiate or integrate in the frequency domain by multiplying or dividing the results
of the FftInTime and GetZoneCenters function accordingly.

9.4	 GetZoneOffset
GetZoneOffset(‘Vector‘)

Description
This function determines the offset of the first zone, i. e. the position of the center of the first
zone, based on the zero line of the Y-axis. The only argument of the function is the vector. The
result is a constant value.

9.5 GetZoneWidths
GetZoneWidths('Vector')

Description
This function determines the width of each zone of the vector in units of the Y-axis. The only
argument of the function is the vector. The result is a vector with a number of values in accor-
dance with the number of zones.

9.6	 MakeVector
MakeVector(r_0,r_1,...,r_n)

Description
This function creates a vector with the value series r_0 to r_n. The arguments can be constant
values or signals and expressions, respectively. This is comparable with the creation of a vector
in the Logical signal definitions dialog.

Example
The MakeVector function mainly serves to enable macros to return multi-dimensional signals
as their results. In the macro editor, the partial results of different calculations can be declared
as interim values within the macro. As final macro result, a vector can be defined whose argu-
ments are the interim values. The vector is basically used as container for macro results to sim-
plify the macro interface.

 Issue 8.2 65

ibaAnalyzer Vector operations

9.7 SetZoneWidths
SetZoneWidths('Vector',‘Widths’,'Offset')

Arguments

'Vector' Vector with the (measured) values of the result vector
'Widths' Vector containing zone widths as values
'Offset' Distance of the zone center of the first zone from the zero line

Description
This function creates a vector with specified zone widths. In doing so, the values of the result
vector are taken from a vector 'vector' and the zone widths from a vector ‘widths.’ Since the
vector with the zone widths can use expressions as arguments, this function can be used to
generate vectors with different zone widths depending on the loaded data. The expressions for
defining the zone widths should be constant over time and not change for data loaded once. If
this is not the case, the width values will be averaged over the overall period.

Example
The function SetZoneWidths (MakeVector(1,2,3,2,1),MakeVector(2,4,10,4,2), -10) creates the
same vector as the one that was created with the logical signal definitions. See ibaAnalyzer
manual, part 2, chapter Logical signal definitions).

9.8 VectorAvg
VectorAvg('Vector')

Description
This function calculates the average of the cross profile for each sample, i. e. the average of all
vector tracks per point in time or per X axis position, respectively. The function returns a one-di-
mensional signal showing the curve of the cross profile average value over the time/length of
the vector signal with the same number of samples.

9.9 VectorKurtosis
VectorKurtosis('Vector')

Description
This function calculates the kurtosis of the cross profile for each sample. The function returns a
one-dimensional signal showing the curve of the cross profile kurtosis over the time/length of
the vector signal with the same number of samples.

Note

Please note that at least 4 signal points must be available, i.e. the vector must
have at least 4 entries.

66 Issue 8.2

Vector operations ibaAnalyzer

9.10	 VectorMarkRange
VectorMarkRange('Vector’,'Start’,'End')

Arguments

'Vector' Vector with the input signals
'Start' Start of the range to be selected
'End' End of the range to be selected

Description
This function returns a partial vector of a ‘vector’ with a zone width from 'Start' (lower edge) to
'End' (upper edge).

The positions must be indicated in units of the Y axis. The positions can be both fixed values and
signals or expressions and thus be dependent on the data loaded.

The expressions for defining the positions should be constant over time and not change for data
loaded once. If this is not the case, the position values will be averaged over the overall period.

9.11 VectorMin / VectorMax

VectorMax
VectorMax('Vector')

Description
This function calculates the maximum of the cross profile for each sample, i. e. the maximum
value of all vector tracks per point in time or per X-axis position, respectively. The function re-
turns a one-dimensional signal showing the curve of the cross profile maximum over the time/
length of the vector signal with the same number of samples.

VectorMin
VectorMin('Vector')

Description
This function calculates the minimum of the cross profile for each sample, i. e. the minimum val-
ue of all vector tracks per point in time or per X-axis position, respectively. The function returns
a one-dimensional signal showing the curve of the cross profile minimum over the time/length
of the vector signal with the same number of samples.

 Issue 8.2 67

ibaAnalyzer Vector operations

9.12	 VectorPercentile
VectorPercentile('Vector’,'Percentile'=0.5)

Arguments

'Vector' Vector with the input signals
'Percentile' The percentile between 0 and 1

Description
This function calculates the percentile of the cross profile for each sample.

The second argument in addition to the ‘vector’ is the specification of the ‘percentile’ to be cal-
culated. Default value is 0.5 (median). The function returns a one-dimensional signal showing
the curve of the cross profile percentile over the time/length of the vector signal with the same
number of samples.

9.13	 VectorSkewness
VectorSkewness('Vector')

Description
This function calculates the skewness of the cross profile for each sample. The function returns
a one-dimensional signal showing the curve of the cross-sectional skewness over the time/
length of the vector signal with the same number of samples. Please note that at least 4 signal
points must be available for this calculation.

9.14 VectorStdDev
VectorStdDev('Vector')

Description
This function calculates the standard deviation of the cross profile for each sample. The function
returns a one-dimensional signal showing the curve of the cross profile standard deviation over
the time/length of the vector signal with the same number of samples.

9.15 VectorSum
VectorSum('Vector')

Description
This function calculates the sum of all values of the cross profile for each sample. The function
returns a one-dimensional signal showing the curve of the value sum in the cross profile over
the time/length of the vector signal with the same number of signals.

Example
If you divide the VectorSum expression by the number of vector tracks, the result is the same as
with the VectorAvg function.

68 Issue 8.2

Vector operations ibaAnalyzer

9.16 VectorToSignal / SignalToVector

VectorToSignal
VectorToSignal('Vector’,'XBase')

Arguments

'Vector' Vector with the (constant) input signals
‘XBase’ Sampling rate of the output signal

Description
This function generates a one-dimensional signal from the elements of a vector along the cross
profile. Every sample of the resulting signal corresponds to an element of the vector. The result
complies with the cross profile.

The ‘XBase’ parameter is optional. If ‘XBase’ is not indicated, the zone widths and the offset of
the vector are used. The resulting signal can also receive non-equidistant samples.

Example
In connection with the YatX functions and the marker position, the VectorToSignal function can
be used to display the cross profile at any position in the vector:

VectorToSignal (YatX([Vector],XMarker1()))

SignalToVector
SignalToVector ('Signal')

Description
Unlike the VectorToSignal function, the function SignalToVector creates a vector with constant
entries from the signal ‘Signal.’ The zone width and offset are determined by the sampling rate
of the input signal. Note that, unlike VectorToSignal, this function has no optional argument for
determining the zone widths. The SetZoneWidth can be used for this purpose.

Note

The input signal should have fewer than 1000 samples, as otherwise the signal
will not be evaluated and will be marked as too complex.

 Issue 8.2 69

ibaAnalyzer Vector operations

9.17 Traverse / TraverseW

Traverse
Traverse('Signal’,'Position’,'N'=40,‘Min’,‘Max’,'Avg'=1)

Arguments

'Signal' The signal measured by a traversing measuring device
'Position' The position of the traversing measuring device along the traverse profile
'N' Number of zones of the resulting vector
'Min' Optional threshold for the minimum of the range to be mapped
'Max' Optional threshold for the maximum of the range to be mapped
'Avg' Optional binary parameter for averaging several samples within a zone pass; The

average is formed by default

Description
This function converts signals originating from a traversing measuring device into a vector for
two-dimensional visualization.

TraverseW
TraverseW('Signal’,'Position’,'Widths’,'Offset'=0,'Avg'=1)

Arguments

'Signal' The signal measured by a traversing measuring device
'Position' The position of the traversing measuring device along the traverse profile
'Widths' The width of the resulting zones
'Offset' Optional offset of the first zone
'Avg' Optional binary parameter for averaging several samples within a zone pass; The

average is formed by default

Description
This function works similarly to Traverse, with the difference being that the dimensions of the
resulting vector are set directly via the zone widths ‘Widths’ and an optional offset parameter.

70 Issue 8.2

Vector operations ibaAnalyzer

9.18 VectorPolynomial / VectorLSQPolyCoef

VectorPolynomial
VectorPolynomial('Coefs’,'Vector','PolynomialType' = 0)

Arguments

'Coefs' Coefficient of the interpolation polynomial; calculated with VectorLSQPolyCoef
'Vector' Sampling points for the analysis of the interpolation polynomial
‘Polynomi-
alType’

Defines the base polynomials which are used; 0 = Lagrange (default),
1 = Chebyshev I, 2 = Chebyshev II, 3 = Legendre

Description
This function can be used to show the interpolation polynomial that is described by the coeffi-
cient ‘Coefs’ as a result of the function VectorLSQPolyCoef.

The sampling points for analyzing the polynomial are determined by the sampling points of the
vector ‘Vector.’ If zones ‘offset’ and/or ‘zone width’ are specified, these are also used, otherwise
the indices are used as Y-values.

The optional parameter ‘PolynomialType’ can be used to use different base polynomials.

Note

Note that the entries of ‘Vector’ do not play a role here.

VectorLSQPolyCoef
VectorLSQPolyCoef('Vector’,'Degree','PolynomialType' = 0)

Arguments

'Vector' Vector for which entries the least squares approximation polynominals are cal-
culated

'Degree' Degree of the interpolation polynomial
‘Polynomi-
alType’

Defines the base polynomials which are used; 0 = Lagrange (default),
1 = Chebyshev I, 2 = Chebyshev II, 3 = Legendre

Description
This function is the extension of the function LSQPolyCoef to vectors. The coefficients of an
interpolation polynomial of degree ‘Degree’ are calculated using the least squares method for
each cross section. The indices of the vector are used as a basis for this, unless a zone offset
and/or the zone width were set when the vector was created. In this case, the corresponding
values are used as the basis.

The optional parameter ‘PolynomialType’ can be used to use different base polynomials.

71 Issue 8.2 71

ibaAnalyzer Text functions

10	 Text	functions

10.1	 InfofieldText	/	ChannelInfoFieldText	/	ModuleInfoFieldText
These functions allow to make information from an info field of a data file, a channel or a mod-
ule available as a text channel.

Arguments

'Index' Index of the file and/or the channel or module
'InfoField' The info field that is to be read out;

Must be set in quotation marks!
'Start' First character of the field content to be read out (optional)

If no value is defined, the complete content is read out
'End' Last character of the field content to be read out (optional)

If no value is defined, it will be read from the start to the last character

Note

Two indices must be specified for the function ModuleInfoFieldText. The index of
the data file as the first argument and the index of the module as the second. All
other arguments remain the same.

InfoFieldText
InfofieldText('FileIndex’,'InfoField',‘Start’,'End')

Description
This function issues the content of an info field as a text channel.

Tip

If you double-click on the desired info field, ibaAnalyzer automatically inserts the
corresponding function as new signal into the signal table. If required, you then
only have to customize the signal name and beginning/end.

If you want to read out the content of an info field as numerical value, use the
Infofield function.

72 Issue 8.2

Text functions ibaAnalyzer

ChannelInfoFieldText
ChannelInfofieldText('ChannelIndex',‘InfoField’,'Start’,'End')

Description
This function issues the content of an info field of a channel as text.

ModuleInfoFieldText
ModuleInfoFieldText('FileIndex',‘ModuleIndex',‘InfoField’,'Start’,'End')

Arguments

'FileIndex' Index of the file to which the module belongs
'ModuleIndex' The index of the module
'InfoField' The info field that is to be read out of the module
'Start' Start index of the info string
'End' End index of the info string

Description
This function works as the InfoFieldText and ChannelInfoFieldText functions, however, it refers
to the info fields of a module and not the data file or signal. The function returns a text channel
with the content of the specified info field.

10.2 TextCompare / CompareText
TextCompare('Text1’,'Text2’,'CaseSensitive=True')

Arguments

'Text1/2' Both strings that are to be compared
'CaseSensitive' Optional parameter which can be used to specify whether case sensitivity is

taken into consideration for the comparison.

Description
This function allows you to compare the text information lexicographically. The function works
with contents of text channels as well as with plain text which – used with quotation marks – is
directly entered in the signal definition.

Comparison and results:

 � The result is -1 if the information of the first text is to be arranged lexicographically before
that of the second text.

 � The result is 0 if both texts contain the same information.

 � The result is +1 if the information of the first text is to be arranged lexicographically after
that of the second text.

 Issue 8.2 73

ibaAnalyzer Text functions

Example
The following table shows the impact of the ‘CaseSensitive’ parameter (examples):

Text1 Text2 Result Comment
TextCompare
("Text1,” "Text2,”
0)

TextCompare
("Text1," “Text2,”
1)

1234 abcd 1234 abcd 0 0 1 = 2
1234 abcd 1234 bcde -1 -1 1 < 2

"a" comes before
"b"

1234 Abcd 1234 abcd 0 1 1 = 2
(not case sensitive)

1 > 2
(case sensitive)

“A” comes after “a”
12340 abcd 1234 abcd 1 1 1 > 2

"0" comes after " "
1234 0abcd 1234 abcd -1 -1 1 < 2

"0" comes before
"a"

12034 abcd 1234 abcd -1 -1 1 < 2
"0" comes before
"3"

1234 abcd 1y34 abcd -1 -1 1 < 2
"2" comes before
"y"

1z34 abcd 1Y34 abcd 1 1 1 > 1
"z" comes after "Y"

74 Issue 8.2

Text functions ibaAnalyzer

10.3 ToText / FromText

ToText
ToText('Expression’,'Format'="%g”,'datatype'=0)

Arguments

'Expression' Expression whose content is to be converted into a text channel
'Format' Optional parameter for a format string
'datatype' Optional parameter that determines the floating-point format

- 'datatype'=0 Default value

- 'datatype'=1 Output is formatted as signed 16-bit integer

- 'datatype'=2 Output is formatted as unsigned 16-bit integer

- 'datatype'=3 Output is formatted as signed 32-bit integer

- 'datatype'=4 Output is formatted as unsigned 16-bit integer

Description
This function converts a numerical signal value into a text channel. In case of equidistant sam-
ples of the ‘Expression’ input signal and a constant Y-value, only the value of the first signal
point is entered and displayed as sample in the text channel. If the Y value changes, a sample is
entered and displayed in the text channel for every new Y value.

If the ‘expression’ input signal does not contain equidistant samples, a sample is entered and
displayed in the text channel for each input sample.

The optional parameter ‘format’ is to be entered according to C printf syntax. You can only indi-
cate a parameter (%) complying with an IEEE 32 bit floating point value. Default value is %g. This
value is also used if you do not indicate the optional parameter.

Examples:
 %g = conversion of the floating point value into a text
 %. 4f = text/number with 4 decimal places, etc.

Example
The ToText function can be helpful e. g. if trends are visualized containing vast amounts of data.
Without constantly changing between the marker and signal view, the numerical values can be
easily displayed. The following illustration shows the use of the ToText function.

 Issue 8.2 75

ibaAnalyzer Text functions

FromText
FromText('TextChannel’,'Start’,'End')

Arguments

'TextChannel' Text channel to be converted
'Start' First character of the field content to be read out (optional)

If no value is defined, the complete content is read out
'End' Last character of the field content to be read out (optional)

If no value is defined, it will be read from the start to the last character

Description
This function converts the content of the text channel ‘TextChannel’ into a numerical value. The
‘Start’ and ‘End’ parameters can optionally be used as indices in order to not convert the entire
string. By default, ‘Start’=0 and ‘End’=length of the string is used.

76 Issue 8.2

Text functions ibaAnalyzer

10.4 TrimText
TrimText('Text',’RemoveOption=0')

Arguments

'Text' Text channel or expression from which spaces are to be removed.
'RemoveOption' Parameter for setting the operating mode:

0 (default): Deleting spaces before and after the text
1: Deleting spaces before the text only
2: Removing spaces after the text only
3: Removing all spaces, also in the text

Description
With this function, you can delete the spaces from texts. This function can be used both in case
of text channels already contained in data files and in case of results of the InfofieldText and
 ToText functions.

10.5 ConcatText
ConcatText('Text1’,'Text2',...)

Description
This function can be used to merge several text channels. Numerical signals are also permissible
here. These are automatically converted into text.

If the X-positions of the individual channels do not match, a new entry is created for each exist-
ing X-position and the missing entry is replaced by the left neighbor, if present.

Example
The file ID is available as a technostring channel for signals in series. There is a product counter
for the end products. Both pieces of information should be brought together as a result.

10.6 CharValue
CharValue('Text','CharNumber'=0)

Arguments

'Text' Input text
'CharNumber' Zero-based position of the character to evaluate

Description
This function returns the ASCII value of the character at position 'CharNumber' in 'Text'. As de-
fault the first character is used, which has the 'CharNumber' zero.

 Issue 8.2 77

ibaAnalyzer Text functions

10.7 CountText / TextLength
CountText('Text','CountOnlyDifferent'=0,'Reset'=0)

Arguments

'Text' Input text
'CountOnlyDif-
ferent'

Optional parameter to count only text which is different from the previous
text flag

'Reset' Optional parameter to reset the counter

Description
This function returns the number of texts within a text channel 'Text'. If the parameter 'Count-
OnlyDifferent' is set to TRUE only texts different from the previous text flag are counted. Using
the digital signal 'Reset' the counter can be reset to zero.

TextLength('Text')

Description
This function returns the number of characters in 'Text'.

10.8 DeleteText / InsertText / ReplaceText
DeleteText('Text','StartPos','Length')

Arguments

'Text' Input text
'StartPos' Zero-based index of the first deleted character
'Length' Number of characters which will be deleted

Description
This function removes a number of 'Length' characters from 'Text'. The first character which is
deleted is at position 'StartPos' within the text.

InsertText('Text1','Text2','Pos')

Arguments

'Text1' Original text
'Text2' Text which is inserted in the original text
'Pos' Zero-based character position where 'Text2' is inserted

Description
This function inserts 'Text2' into 'Text1' at the zero-based character position 'Pos'. If 'Pos' is less
or equal to zero then 'Text2' is prepended to 'Text1'. If 'Pos' is larger or equal to the length of
'Text1' then 'Text2' is appended to 'Text1'.

78 Issue 8.2

Text functions ibaAnalyzer

ReplaceText('Text','SearchText','ReplaceText')

Arguments

'Text' Input text
'SearchText' Text which shall be replaced within 'Text'
'ReplaceText' If 'SearchText' is found it is replaced by 'ReplaceText'

Description
This function replaces all occurrences of 'SearchText' within 'Text' with 'ReplaceText'.

10.9 MidText / FindText
MidText('Text','StartPos','Length')

Arguments

'Text' Input text
'StartPos' Zero-based index of the first character to extract from the text
'Length' Number of characters to extract from the text

Description
This function returns a number 'Length' characters from within 'Text'. The resulting string starts
with the character at the zero-based postion 'StartPos'.

FindText('Text','SearchText','CaseSensitive'=0,'N'=1)

Arguments

'Text' Input text
'SearchText' The text which needs to be identified within the input text
'CaseSensitive' Optional parameter to enable case sensitive text search
'N' Parameter to find not the first but rather the 'N'th occurrence of 'Search-

Text'

Description
This function returns a zero-based index of the position of the 'N'th occurrence of 'SearchText'
within 'Text'. If the parameter 'CaseSensitive' is set to TRUE a case sensitive search is conducted.
If the 'SearchText' is not found, the result is -1.

79 Issue 8.2 79

ibaAnalyzer Miscellaneous functions

11	 Miscellaneous	functions

11.1 Debounce
Debounce ('Expression’,'Interval')

Arguments

'Expression' Input signal that is to be debounced
'Interval' Dead time (reaction time)

Description
This function delivers a debounced signal trend of 'Expression’ with ‘interval’ as dead time in [s].
‘Interval’ is interpreted as position in [m] for length-based signals.

The function works in a manner similar to an OFF-delay time relay, however, with the difference
that the signal change from TRUE to FALSE (falling edge) is presented in realtime, i.e. without
delay, unless another change from FALSE to TRUE (rising edge) occurs during the time set.

In this way, it is possible to smooth unsteady signals, for example, from photocells or limit
switches. This is particularly important if these signals are used as conditions in certain opera-
tions, such as XMarkValid or XCutValid, because every discontinuity would interrupt the calcu-
lation of the operation, so that result values would be lost. The difference can be clearly seen in
the following picture.

80 Issue 8.2

Miscellaneous functions ibaAnalyzer

11.2 Envelope
Envelope('Expression’,'Interval')

Arguments

'Expression' Expression around which the envelope curve is to be formed
'Interval' X-axis interval

Description
This function calculates the upper envelope of a signal or expression. The envelope is con-
structed by linking the high peaks of the signal curve. The quality of the envelope curve can be
adjusted by parameter ‘interval.’ Without this parameter, only the maximum peak will be taken
into account over the entire recording length of the signal. The parameter ‘interval’ specifies the
length of an interval in base units of X-axis (s, m, Hz, 1/m). By using this parameter the peaks
inside the interval will be taken into account too and the envelope nestles against the signal
curve.

Tip

In order to get an envelope along the lower side of the signal curve, you can en-
ter the same function in the form
-Envelope (-'Expression’,'Interval')

. In this case the low peaks (minimum values) will be linked.

11.3 False / True
False() and/or True()

Description
These operands have the constant value 0 or 1.

In Boolean operations (AND, OR etc.) the value is taken for logical 0 (FALSE), resp. logical 1
(TRUE). In arithmetic operations and in combination with analog values, the value is taken for
0.0, resp. 1.0 ("fixed zero" or "fixed one").

11.4	 GetBit	/	GetBitMask

GetBit
GetBit('Expression’,'Bitnumber')

Description
This function returns the Boolean value of the 'Bitnumber' bit of 'Expression' after rounding to
the nearest integer value. The rounding limit is in each case the next 0.5 increment. (2.48 --> 2;
2.50 -->3). Valid bit number sequence: 0 (LSB) to 15 (MSB).

 Issue 8.2 81

ibaAnalyzer Miscellaneous functions

Note

The function does not apply to integers with 64 bits because these data types
are not supported by ibaPDA and thus cannot be included in a data file.

Example
In the table below, the least significant byte of an integer value with the bits 0...7 is shown as an
example. In order to represent the values 0...8, the individual bits are highlighted as with “X.” (X
= TRUE)

Tip

If one or more 8-, 16- or 32-bit integers should be reduced to single bits you can
ease your work. Just make a right mouse click on the desired signal in the signal
tree and select “Show bits” in the context menu. All bits are immediately shown
as individual digital signals, without programming the GetBit function. The inter-
nal method of this function is the same like for GetBit.

GetBitMask
GetBitMask('Expression’,'Bitnumber')

Description
This function interprets 'Expression' as a bit mask of a float value and returns the value of the
bit 'bitnumber'. Valid range: 0 (LSB) to 31 (MSB)

This function was specifically developed for work with data from SimadynD in one particular
case where up to 32 digital values are recorded in packed format as a float variable. The GetBit-
Mask function only evaluates the valence of the specified bit 'bitnumber' irrespective of wheth-
er it is part of the mantissa or of the exponent. In contrast to the GetBit function, there is no
rounding to the next integer.

82 Issue 8.2

Miscellaneous functions ibaAnalyzer

Tip

If one or more 32 bit floating values should be reduced to single bits you can
ease your work. Just make a right mouse click on the desired signal in the signal
tree and select “Show bits” in the context menu. All 32 bits of the signal will be
displayed immediately as separate digital signals in new signal strip. The internal
method of this function is the same like for GetBitMask.

11.5 HighPrecision
HighPrecision('Expression')

Description
With this function, 'expression' is marked as quantity with double precision. Calculations which
are then performed with 'expression' are implemented with double precision, even if the origi-
nal expression only has single precision.

Double precision, on the one hand, has the advantage that calculations can be performed more
precisely, on the other hand, however, it also has the disadvantage that it requires twice as
much memory. Therefore, ibaAnalyzer automatically decides based on the input arguments
which precision to be used for a calculation.

 Issue 8.2 83

ibaAnalyzer Miscellaneous functions

11.6 InfoField / ChannelInfoField / ModuleInfoField
These functions make it possible to read out information from an info field of a data file, a chan-
nel or a module.

Note

The functions InfoField, ChannelInfoField and ModuleInfoField expect a numeri-
cal value. If text is to be read out, the functions InfoFieldText, ChannelInfoField-
Text and ModuleInfoFieldText must be used. See ì InfofieldText / ChannelInfo
FieldText / ModuleInfoFieldText, page 71.

Arguments

'Index' Index of the file and/or the channel or module
'InfoField' The info field that is to be read out;

Must be set in quotation marks!
'Start' First character of the field content to be read out (optional)

If no value is defined, the complete content is read out
'End' Last character of the field content to be read out (optional)

If no value is defined, it will be read from the start to the last character

Note

Two indices must be specified for the function ModuleInfoField. The index of the
data file as the first argument and the index of the module as the second. All
other arguments remain the same.

InfoField
Infofield('FileIndex’,'InfoField’,'Start’,'End')

Tip

If you double-click on the desired info field, ibaAnalyzer automatically inserts the
corresponding function as new signal into the signal table. If required, you then
only have to customize the signal name and beginning/end. This method also
works in the input box of the expression builder. The function will then be insert-
ed at the cursor position.

If you want to read out the content of an info field as text channel, use the
 ChannelInfofieldText function.

84 Issue 8.2

Miscellaneous functions ibaAnalyzer

ChannelInfoField
ChannelInfofield('ChannelIndex’,‘InfoField’,‘Start’,'End')

ModuleInfoField
ModuleInfoField('FileIndex’,'ModuleIndex’,‘InfoField’,‘Start','End')

Note

Two indices must be specified for this function. The index of the data file as the
first argument and the index of the module as the second.

11.7 LimitAlarm
LimitAlarm('Expression',‘Limit’,'DeadBand’,'Time')

Arguments

'Expression' Measured value
'Limit' Limit from which the function returns TRUE
'DeadBand' Specification of a dead zone below the limit value, within which the function

does not reset to FALSE
'Time' Specification of the time, for which the measured value must be above the limit

until the function returns TRUE

Description
This function monitors the measured value ('Expression') and sets the result to TRUE if the mea-
sured value is above the ('Limit') limit value longer than the specified time ('Time'). The result of
the function becomes FALSE again if the measured value falls below the limit value by the value
specified under the ('DeadBand') deadzone.

Tip

The LimitAlarm function can also be used for a lower limit. For this purpose, only
the measured value and the limit value must be flipped, i.e. multiplied by (-1).

For example: LimitAlarm([0:1] *(-1), 9 *(-1), 0.5, 0.4)

 Issue 8.2 85

ibaAnalyzer Miscellaneous functions

11.8 ManY
ManY('Xbase’,'y0’,'y1',....)

Arguments

‘XBase’ Sampling rate of the output signal
'y0’, 'y1',… Y-values of the output signal

Description
This function can be used in order to manually create a signal trend with the "measured values"
of 'y0'....'y99', each at a time or position distance of 'Xbase' apart. The 'Xbase' value is ex-
pressed in [s] for time-related values and in [m] for length-related values. The number of points
is limited to 100.

In this way, it is, for example, possible to enter reference curves to which the signals measured
in the field are then compared. Furthermore, it is also possible to add data which is not avail-
able as a measuring value to an analysis. Using this function, text channels can also be manually
generated entering different values.

Tip

If you put the parameters y0 to y99 (max.) in brackets, the entered characters
are not taken over as numerical values but as ASCII characters.

11.9 Rand
Rand('Count’,'XBase')

Description
This function generates a signal consisting of random numbers within the range of 0 to 32767
for the 'Count' of points in the 'XBase' [s] (time-based) or [m] (length-based). The next picture
shows three signals which are all 100 seconds long, but which consist of different numbers of
points. The time basis 'XBase' is 1 s, 100 ms and 10 ms.

86 Issue 8.2

Miscellaneous functions ibaAnalyzer

11.10 Sign
Sign('Expression')

Description
This function returns the sign of 'Expression'.

'Expression' > 0 --> +1

'Expression' = 0 --> 0

'Expression' < 0 --> -1

11.11 Technostring
Technostring('Index’,'Begin’,End')

Arguments

'Index' Data file index
'Begin' Start of the range to be read out
'End' End of the range to be read out

Description
This function extracts the string from the data file index ‘Index’ between ‘Begin’ and ‘End.’ The
standard start index is 0. This means that it is possible to interpret information from the techno-
string as signals (numerical characters only).

The technostring information displayed in the "Info" branch in the signal tree window is evalu-
ated. This is, however, subject to the condition that the technostring information was saved by
ibaPDA in the data file.

 Issue 8.2 87

ibaAnalyzer Miscellaneous functions

'Begin' and 'End' correspond to the position of the characters in the technostring which limit the
range of interest which is to be evaluated as a signal. Only numerical characters can be evaluat-
ed. Leading zeros are ignored.

The 'Index' only has to be entered if several data files are open at the same time. The file in the
topmost position in the signal tree window has the index 0. All the other files, from top to bot-
tom, then have the index 1, 2, and so forth. The index must always be 0 if only one file is open.

11.12 WindowAlarm
WindowAlarm('Expression’,'Limit1’,'DeadBand1’,'Limit2’,'DeadBand2’,'Time')

Arguments

'Expression' Measured value
'Limit1' Upper limit value, from which the function returns TRUE
'DeadBand1' Specification of the dead zone below the upper limit value ('Limit1'), within

which the function does not reset to FALSE
'Limit2' Lower limit value, from which the function returns TRUE
'DeadBand2' Specification of the dead zone above the lower limit value ('Limit2'), within

which the function does not reset to FALSE
'Time' Specification of the time, for which the measured value must be greater than

the upper limit or smaller than the lower limit until the function returns TRUE

Description
This function monitors the measured value ('Expression') and sets the result to TRUE if the mea-
sured value is longer than the specified time ('Time') outside the range between the upper limit
value ('Limit1') and the lower limit value ('Limit2'). The result of the function becomes FALSE
again if the measured value falls below the upper limit by the value specified under 'Dead-
Band1', or exceeds the lower limit by the value specified under 'DeadBand2'.

11.13 YatX / SetYatX

YatX
YatX('Expression’,'X’,'Continuous'=0)

Arguments

'Expression' input signal
'X' Position at which the value is to be read out
'Continuous' Optional parameter for permitting variable values of ‘X’

Description
This function returns as its result the Y value of ‘expression' at position 'X' on the X-axis. The
function can be applied to both time-related and length-related signals.

In standard mode, i.e. if the ‘continuous' parameter is not set (or FALSE or 0), the function ex-
pects a constant X value and returns a constant Y value.

88 Issue 8.2

Miscellaneous functions ibaAnalyzer

The 'X' parameter can also be variable, i.e. it can be a function itself. In this case, the continuous
mode needs to be activated by setting the ‘continuous' parameter to TRUE or 1. The function
then determines the suitable Y value for every value of 'X' .

SetYatX
SetYatX('Expression',‘Value’,'XPos')

Arguments

'Expression' Expression that should be changed
'Value' The value to be inserted at the position ‘XPos’
'XPos’ The X-position where the value ‘Value’ is to be inserted

Description
The function SetYatX makes it possible to create a copy of a signal in which a value has been
changed. As a result, it provides a copy of the signal ‘Expression’ where the value ‘Value’ was
inserted at the position ‘XPos.’

The function behaves differently depending on whether an equidistantly sampled signal exists
or not. In the case of equidistant signals, a distinction is made between the following cases:

■	 If ‘XPos’ is smaller than the offset of the signal, the signal is returned unchanged.

■	 If ‘XPos’ corresponds to the size of the signal (see XSize) plus the sampling size, the signal is
extended to include a sample with the value ‘Value’.

■	 In all other cases, the new value is inserted at the position ‘XPos’ or at the next smaller sam-
ple position.

For not equidistantly sampled signals, the function replaces the value at the position ‘XPos’, if
present, or inserts a new sample.

Note

The function can also be used to insert text.

 Issue 8.2 89

ibaAnalyzer Miscellaneous functions

11.14 PulseFreq
PulseFreq('Expression’,'Omega'=0, 'EdgeType'=2, 'MinFreq'=0.05)

Arguments

'Expression' Pulse counter signal
'Omega' Filter frequency
'EdgeType' Edge type to be counted

'EdgeType' = -1 Falling edges only
'EdgeType' = 0 Rising and falling edges
'EdgeType' = 1 Rising edges only
'EdgeType' = 2 'Expression' is a pulse counter

'MinFreq' Smallest frequency that is shown

Description
This function computes the frequency of a pulse counter 'Expression'. The unit of the result is
pulses/sec or Hz.

A low-pass filter with filter frequency 'Omega' is applied to the result. If 'Omega' is 0 then the
low-pass filter is deactivated. 'EdgeType' determines which edges of pulses should be counted.
Zero is returned as the calculated frequency if no pulse occurs in 1000 samples.

This function was especially created for using the WAGO incremental encoder 750-631. You may
use the function to calculate the speed based on the pulse counter signal from the encoder. The
pulse counter value is differentiated taking into consideration possible counter overflows. As the
result of the differentiation may include interfering frequencies or noise, a low-pass filter can
then be used. The filter frequency to be set should be slightly above the maximum pulse fre-
quency.

9090 Issue 8.2

Filter functions ibaAnalyzer

12	 Filter	functions

12.1 LP
Lp('Expression’,'Omega')

Arguments

'Expression' Measured value
'Omega' Limit frequency for the lowpass filter

Description
This function is a first-order digital lowpass filter with the limit frequency 'omega'. When ap-
plied to a signal ‘expression,' it returns a signal which only contains the alternating components
with frequencies smaller than 'omega.'

Note

Digital filters which were generated using the filter editor can be saved in the
system and are then also available as filter functions in the expression builder.

12.2 PreWhiten
PreWhiten('Expression’,'Order')

Arguments

'Expression' Measured value to be filtered
'Order' Order of the FIR filter

Description
This function applies an FIR filter with coefficients that are determined using the Yule-Walker
equation. It is a high-pass filter that only leaves white noise and the pulse components of the
signal.

91 Issue 8.2 91

ibaAnalyzer Technological functions

13	 Technological	functions

13.1 ChebyCoef
ChebyCoef('Vector’,'begin_seg’,'end_seg’,'Order’,'CoverFactor'=1)

Arguments

'Vector' Measured values that are to be approximated
'begin_seg' Vector segment to be applied first
'end_seg' Vector segment to be applied last
'Order' Order of the Chebyshev polynomial
'CoverFac-
tor'

Optional argument for determining the coverfactor

Description
The ChebyCoef function calculates the coefficient of the Chebyshev polynomial of the order
‘Order’ across the cross profile of a vector ‘Vector.’ In the process, only the entries of the vec-
tor between the segments ‘begin_seg’ and ‘end_seg’ are taken into consideration. An optional
cover factor ‘CoverFactor’ determines the behavior at the edges.

Example
The Chebyshev polynomial, named after the Russian mathematician Tschebyschow, turned out
to be a suitable mean for describing the profile of a roll gap in a mathematical way. Regarding
the roll gap approximation, the orders 0 to 6 of the polynomial are relevant. The function pro-
vides the corresponding coefficients for this.

In real life, the coefficients can be derived from the measured values of a flatness measuring
roll. The measured values of every zone are collected in a multidimensional signal ‘Vector’ vec-
tor. Each array field corresponds to a segment in terms of the cross profile of the gap.

13.2 CubicSpline
CubicSpline('Expression’,'X’,'Y')

Arguments

'Expression' Auxiliary signal to determine the sampling rate of the result
'X' X-coordinates (sampling points) that define the spline
'Y' Y-coordinates that define the spline

Description
As a result, this function delivers a cubic spline that is aligned with the sampling points ‘X’ with
the associated values ‘Y.’ The sampling rate and the weighting points of the result are deter-
mined by ‘Expression.’

The X coordinates do not have to be unambiguous and sorted. If there are several value pairs
with the same X coordinate, only the last value pair will be used for calculating the spline. The
remaining value pairs are automatically sorted by X coordinates.

92 Issue 8.2

Technological functions ibaAnalyzer

Example
For a series of points, the function delivers a smoothed signal along the calculated spline as a
result. The function can be used for interpolating a compensation curve for a signal with few
samples:

A curve has only 17 samples over a time of 5000 s (Y values, red curve). The corresponding
X coordinates – also only 17 values – are depicted as blue curve. The compensation curve as
smoothed signal is to receive a significantly higher resolution (more samples). Therefore, the
CubicSplinefunction is transferred a linear function with 5000 samples at an interval of 1 s as
'expression' parameter.

With a high zoom level, the calculated samples of the compensation curve can be seen (green).
The original X/Y coordinates form the knots of the splines (purple).

 Issue 8.2 93

ibaAnalyzer Technological functions

13.3 LSQPolyCoef
LSQPolyCoef('X’,'Y’,'degree','PolynomialType’ = 0)

Arguments

'X' X-coordinates (sampling points) that define the interpolation polynomial
'Y' Y-coordinates that define the interpolation polynomial
'degree' Polynomial degree (0 = average, 1 = linear, 2 = square, 3 = cubic, etc.)
‘Polynomi-
alType’

Defines the base polynomials which are used; 0 = Lagrange (default),
1 = Chebyshev I, 2 = Chebyshev II, 3 = Legendre

Description
This function calculates the coefficient of an interpolation polynomial of the degree ‘degree’ for
value pairs ‘X” and ‘Y” according to the least squares method.

The result of the function is a vector (multidimensional signal, array) containing the coefficients.
The array field with the index 0 contains the constant share or offset of the polynomial. The co-
efficients are written in array fields with ascending index according to their ascending degrees.

The analysis of the polynomial can be done with the function ‘Polynomial.‘

The optional parameter ‘PolynomialType’ can be used to use different base polynomials.

Example
A quadratic approximation yields a polynomial of the form y = ax² + bx + c, i. e. the result is a
vector with a total of 3 coefficients.

In principle, the function is based on an X-Y relationship, i. e. the operands X and Y can also be
two different measurement signals. If only one regression curve for a signal is to be calculated
over time, the time values also have to be in the form of a signal, e. g. by means of Xvalues ([sig-
nal]). This time signal, whose Y values are identical to the time along the X axis, can be used as
operand 'X' in the LSQPolyCoef function.

94 Issue 8.2

Technological functions ibaAnalyzer

13.4 Polynomial
Polynomial('Coefs’,'X','PolynomialType’ = 0)

Arguments

'Coefs' Vector with coefficients, e.g. as result of LSQPolyCoef
'X' X-coordinates (sampling points) at which the polynomial is to be evaluated
‘Polynomi-
alType’

Defines the base polynomials which are used; 0 = Lagrange (default),
1 = Chebyshev I, 2 = Chebyshev II, 3 = Legendre

Description
This function calculates the polynomial value for every sample of ‘X‘ on the basis of a coefficient
vector 'Coefs‘. It is required for the representation of regression lines or compensation curves
whose coefficients were calculated with the LSQPolyCoef function prior to this.

The optional parameter ‘PolynomialType’ can be used to use different base polynomials.

13.5	 LSQExponentialCoef
LSQExponentialCoef('X','Y')

Arguments

'X' X-coordinates (sampling points) that define the interpolating exponential
function

'Y' Y-values that define the interpolation exponential function

Description
This function calculates the coefficients of an interpolating polynomial a*exp(b*x) for the func-
tion given by X-coordinates 'X' and corresponding function values 'Y' using the least squares
method. The result of the function is a vector containing the coefficients.

13.6	 Exponential
Exponential('Coefs','X')

Arguments

'Coefs' Vector with coefficients, e.g. the result of LSQExponentialCoef
'X' X-coordinates (sampling points) where the exponential function is evaluated

Description
This function calculates the value of an exponential function a*exp(b*X) for every sample of 'X'
with the coefficients a and b given as vector 'Coefs'. The function can be used for the visualiza-
tion of the results of LSQExponentialCoef.

95 Issue 8.2 95

ibaAnalyzer Spectral analysis (FT operations)

14	 Spectral	analysis	(FT	operations)
ibaAnalyzer can carry out the spectral analysis in the form of the Fast Fourier Transformation
(FFT). With the FFT operations available, a time or length based signal can not only be displayed
in FFT mode, but also made available as a calculated expression and used for further analyses.

For most of the functions described here, it is possible to either display an amplitude or a power
trend. This is indicated by the suffix ‘Ampl’ or ‘Power’ in the function names.

14.1	 FftInTimeAmpl	/	FftInTimePower
e.g. FftInTimeAmpl('Expression’,'Samples’,'#Freq’,'min_Freq'=0, 'max_Freq’,
'Window'=0, 'Overlap'=0, 'DC-Suppression'=0)

Arguments

'Expression' Expression for which the FFT should be calculated
'Time' Determination of the time or length intervals used. This rounds to an inter-

val containing 2^N samples.
'#Freq' Number of frequencies displayed
'min_Freq' Minimum frequency
‘max_Freq' Maximum frequency
'Window' Window type:

0 = Square

1 = Bartlett

2 = Blackman

3 = Hamming

4 = Hanning

5 = Blackman-Harris

6 = Flat top
‘Overlap' Overlap factor
'DC-Suppression' DC suppression

Description
These functions calculate amplitude or power of the Fourier transformation of ‘Expression’ for
sections with 2^N samples each. N is determined by rounding the product 'Time' x sampling fre-
quency to a power of two.

The result is a vector that contains '#Freq' equally divided frequencies between 'min_Freq' and
'max_Freq' per section. The window type that is used for the calculation can be controlled via
the ‘Window’ parameter.

The overlap factor determines the overlapping of the time segments and can be between 0 (no
overlapping) and 1 (full overlapping). It is optionally possible to enable the DC suppression with
the parameter ‘DC Suppression.’

Example
The FftInTime function can be used to display fluctuating frequencies over time. The resulting
vector can be displayed in a 2D view for this purpose.

96 Issue 8.2

Spectral analysis (FT operations) ibaAnalyzer

14.2	 FftOrderAnalysisAmpl	/	FftOrderAnalysisPower
e.g. FftOrderAnalysisAmpl('Expression’,'Samples’,'Freq’,'min_Order'=0,
'max_Order’,'Order_division’,'Window'=0,'Overlap'=0,’DC-Suppression'=0)

Arguments

'Expression' Expression for which the order analysis should be carried out
'Time' Determination of the time or length intervals used
'Freq' Basic frequency for the order analysis (rotational frequency)
'min_Order' Minimum displayed order
'max_Order' Maximum displayed order
'Order_division' Grid width between the integer orders
'Window' Window type

0 = Square

1 = Bartlett

2 = Blackman

3 = Hamming

4 = Hanning

5 = Blackman-Harris

6 = Flat top
‘Overlap' Overlap factor
'DC-Suppression' DC suppression

Description
This function calculates the orders (i.e. multiples of a basic frequency ‘Freq’) for a signal and
returns a vector with the orders between ‘min_Order’ and ‘max_Order.’ The number of data
points per order is determined by the parameter ‘Order_division.’

The window type that is used for the calculation can be controlled via the ‘Window’ parameter.
The overlap factor determines the overlapping of the time segments and can be between 0 (no
overlapping) and 1 (full overlapping). It is optionally possible to enable the DC suppression with
the parameter ‘DC Suppression.’

Contrary to the FftInTime function, the time/frequency is no longer displayed on the Y axis, but
the rotational frequency and its multiple, i.e. the orders. The frequency axis is distorted in ac-
cordance with the current revolutions per minute so that the orders are no longer displayed as
a curve, but as straight lines. Depending on the function, either an amplitude trend (FftOrder
AnalysisAmpl) or a power trend (FftOrderAnalysisPower) is calculated.

Note

The function does not yield results if the number of signal points per revolution
is more than twice as high as the selected parameter ‘Time.’

 Issue 8.2 97

ibaAnalyzer Spectral analysis (FT operations)

Example
With the FftOrderAnalysis function, you can calculate an order analysis. Frequencies corre-
sponding to the motor speed or its multiple are called orders. The first order complies with the
frequency of the motor speed, the second order complies with the frequency of the first order
multiplied by the factor 2, etc. The order analysis calculates the level or the level curve of this
order.

An interpolation is carried out between the individual signal points to calculate the
 FftOrderAnalysis.

98 Issue 8.2

Spectral analysis (FT operations) ibaAnalyzer

14.3	 FftPeaksInTimeAmpl	/	FftPeaksInTimePower
e.g. FftPeaksInTimeAmpl('Expression’,'Samples’,'#Peaks,’ 'min_Freq'=0,
'max_Freq’,'Window'=0,'Overlap'=0,'DC-Suppression'=0,'Zero-Padding'=0)

Arguments

'Expression' Expression for which the frequency spectra should be evaluated
'Time' Determination of the time or length intervals used. This rounds to an inter-

val containing 2^N samples
'#Peaks' Number of peaks displayed
'min_Freq' Optional parameter for the minimally considered frequency, i.e. peaks at

lower frequency are not shown
‘max_Freq' Optional parameter for the maximum considered frequency, i.e. peaks at

higher frequency are not shown
'Window' Window type:

0 = Square

1 = Bartlett

2 = Blackman

3 = Hamming

4 = Hanning

5 = Blackman-Harris

6 = Flat top
‘Overlap' Overlap factor
'DC-Suppression' DC suppression
'Zero-Padding' Adding zeros

Description
This function is used to calculate frequency peaks across smoothed time intervals, which are
determined by the parameter ‘Time.’ The ‘#Peaks,’ the highest points between the frequencies
‘min_Freq’ and ‘max_Freq,’ are calculated here. The time line of the frequency and the pairs of
peak values are returned as a vector.

The entries are sorted according to the following pattern:

■	 Index 0: Frequency with the highest peak

■	 Index 1: Amplitude/power of the highest peak

■	 Index 2: Frequency with the second highest peak

■	 Index 3: Amplitude/power of the second highest peak

■	 Etc.

 Issue 8.2 99

ibaAnalyzer Spectral analysis (FT operations)

Tip

To read out the requested values from the result array, you can use the
' GetRows' function.

The window type that is used for the calculation can be controlled via the ‘Window’ parameter.
The overlap factor determines the overlapping of the time segments and can be between 0 (no
overlapping) and 1 (full overlapping). It is optionally possible to enable the DC suppression with
the parameter ‘DC Suppression.’ If the parameter ‘Zero_Padding’ is set to 1 or True(), the last
window is filled with zeros before calculating the FFT.

14.4	 FftAmpl	/	FftPower
e.g. FftAmpl('Expression’,‘Samples’,'Window'=0,‘DC-Suppression'=0,
'Zero-Padding'=0)

Arguments

'Expression' Expression for which the Fourier transformation should be calculated
'Samples' Number of measured values to be taken into consideration and implied

determination of the used time or length interval, depending on the sam-
pling rate.

'Window' Window type:

0 = Square

1 = Bartlett

2 = Blackman

3 = Hamming

4 = Hanning

5 = Blackman-Harris

6 = Flat top
'DC-Suppression' DC suppression
'Zero-Padding' Adding zeros

Description
These functions calculate the amplitude or power of the Fourier transformation of the signal.
The used time section is determined by rounding the measuring points ‘samples’ to a power of
two.

Note

The parameter ‘Samples’ is rounded up. At least 128 measuring points must be
used.

100 Issue 8.2

Spectral analysis (FT operations) ibaAnalyzer

The window type that is used for the calculation can be controlled via the ‘Window’ parameter.
It is optionally possible to enable the DC suppression with the parameter ‘DC Suppression.’ If
the parameter ‘Zero_Padding’ is set to 1 or True(), the window is filled with zeros to calculate
the FFT.

14.5	 FftComplex
FftComplex('Expression’,'inv’,'normalize'=0)

Arguments

'Expression' Expression for which the Fourier transformation should be calculated
'inv' Optional parameter for enabling an inverse Fourier transformation
'normalize' Optional parameter for selecting a normalization

Description
This function performs a Fourier transformation for a complex signal across the entire expres-
sion and returns a vector with a real and imaginary component of the Fourier transformation.
The input signal may consist both of an individual signal or a vector consisting of a real and
imaginary component. A square window is used for the computation here.

If the parameter ‘inv’ is set to True() or 1, then an inverse Fourier transformation is computed.
In this case, the function expects an input signal being either frequency-based or 1/length-
based. The result of the operation then is a time-based or length-based signal accordingly.

The following values are permissible for the ‘normalize’ parameter:

 � 0: No normalization is carried out.

 � 1: The result is divided by the number of samples. For an inverse transformation, the result
is not changed.

 � 2: The result is divided by the square root of the number of samples. This applies both to a
normal and an inverse transformation

 � Other values: Function as with value 1.

The number of frequency samples is determined by the number of samples of the input signal.
If N is even, N/2+1 frequency points are calculated; the first (DC component) and last point are
purely real. If N is odd, (N+1)/2 frequency points are calculated; for those, the DC component is
purely real.

 Issue 8.2 101

ibaAnalyzer Spectral analysis (FT operations)

14.6	 FftReal	/	FftRealInverse
e.g. FftReal('Expression’,'normalize'=0)

Arguments

'Expression' Expression for which the Fourier transformation should be calculated
'normalize' Optional parameter for enabling the normalization

Description	of	FftReal
This function performs a Fourier transformation for a real signal across the entire expression
and, as a result, delivers a vector with a real and imaginary component of the Fourier transfor-
mation. A square window is used here.

If the parameter ‘normalize’ is set to True() 1, a normalization is performed. If the number of
samples (N) of the signal is odd, all frequency values except for the DC component are divided
by N/2. If N is even, all frequency values except for the DC component and the last value are
divided by N/2.

The number of frequency samples is determined by the number of samples of the input signal.
If N is even, N/2+1 frequency points are calculated; the first (DC component) and last point are
purely real. If N is odd, (N+1)/2 frequency points are calculated; for those, the DC component is
purely real.

Description	of	FftRealInverse
This function calculates the inverse Fourier transformation, as created with FftReal. The result
is real here and the input signal must accordingly be a vector consisting of a real and imaginary
component. Otherwise the function works just like FftReal.

102 Issue 8.2

Spectral analysis (FT operations) ibaAnalyzer

14.7	 AWeighting	/	DbScale

AWeighting
Aweighting('Spectrum’,'Type')

Arguments

'Spectrum' Spectrum
'Type' Specification of the type

Description
This function weights a spectrum according to the so-called A-weighting. This is a weighting fil-
ter that corresponds to human hearing.

Example
After applying this function, a spectrum can be assessed with respect to the perceptible noise
emission.

DbScale
DbScale('Spectrum’,'Reference')

Arguments

'Spectrum' Spectrum that should be logarithmically scaled
'Reference' Optional

Description
This function provides a logarithmic scaling in dB for a signal spectrum. A meaningful result can
only be expected if the amplitude of a spectrum exists as an input.

Tip

Functions that calculate such an amplitude are: FftAmpl, FftInTimeAmpl,
FftOrderAnalysisAmpl

14.8 IntSpectrum
IntSpectrum ('Spectrum')

Description
This function integrates a given spectrum. In this way, the vibration speed can be calculated
from the frequency of an acceleration sensor.

103 Issue 8.2 103

ibaAnalyzer Electrical functions

15	 Electrical	functions

15.1	 Eff
RMS/Eff('Spectrum’,'Frequency')

Arguments

'Spectrum' Measured value for which the effective value should be determined
'Frequency' Fundamental frequency

Description
This function calculates the so called "root mean square" value (or the effective value) of ‘Ex-
pression’ with a fundamental frequency of ‘Frequency.’

e(n): Sample n of signal e (‘expr’)

N: Number of samples in a period

Example
For an alternating voltage course with a frequency of 0.1 kHz, which is overlaid by a second AC
voltage with 0.5 kHz, the effective value of the voltage should be determined for both frequen-
cies by applying the function Eff with a second argument 0.1 or 0.5.

Note

There is no difference between the functions RMS and Eff. Both functions are
supported by ibaAnalyzer for compatibility reasons.

104 Issue 8.2

Electrical functions ibaAnalyzer

15.2	 Delta	functions

The delta functions use the line voltages and line currents in a delta grid to calculate the differ-
ent power values.

Arguments

'u12','u13','u23' Connection voltage (same as the phase voltages)
'i1','i2','i3' Connection currents
'freq' Fundamental frequency

Note

These functions are typically applied to a delta grid, but they can be applied to
any grid in which the line voltages and currents are measurable.

DeltaCollectiveUeff
DeltaCollectiveUeff('u12’,'u13’,'u23’,'freq')

Calculates the collective effective voltage in a delta grid:

Uxy,eff : the effective value of the line voltage Uxy

 Issue 8.2 105

ibaAnalyzer Electrical functions

DeltaCollectiveIeff
DeltaCollectiveIeff('i1’,'i2’,'i3’,'freq')

Calculates the collective effective current in a delta grid:

Ix,eff : the effective value of the line current ix

DeltaActiveP
DeltaActiveP('u13',‘u23',‘i1’,'i2’,'freq')

Calculates the active power in a delta grid:

N : the number of samples in a period

uxy : the voltage between the connection x and y (u13 = -u31)

ix : the current in line x

DeltaApparentP
DeltaApparentP('u12’,'u13’,'u23’,'i1’,'i2’,'i3’,'freq')

Calculates the apparent power in a delta grid:

Ueff : the collective effective voltage

Ieff : the collective effective current

DeltaReactiveP
DeltaReactiveP('u12’,'u13’,'u23’,'i1’,'i2’,'i3’,'freq')

Calculates the reactive power in a delta grid:

S : apparent power

P : active power

106 Issue 8.2

Electrical functions ibaAnalyzer

DeltaReactivePS
DeltaReactivePS('u12','u13','u23','i1','i2','i3','freq')

Calculates the signed reactive power QS in the delta grid:

DeltaActivePFactor
DeltaActivePFactor('u12','u13','u23','i1','i2','i3','freq')

Calculates the active power factor in a delta grid:

S : apparent power

P : active power

DeltaReactivePFactor
DeltaReactivePFactor('u12','u13','u23','i1','i2','i3','freq')

Calculates the reactive power factor in a delta grid:

Q : reactive power

P : active power

DeltaReactivePFactorS
DeltaReactivePFactorS('u12','u13','u23','i1','i2','i3','freq')

Calculates the signed reactive power factor in a delta grid:

QS : signed reactive power

P : active power

 Issue 8.2 107

ibaAnalyzer Electrical functions

15.3	 Star	functions

The star functions use the phase voltages and phase currents to calculate the different power
values.

Arguments

'u1','u2','u3' Phase voltages
'i1','i2','i3' Phase currents
'i4' Neutral line
'freq' Fundamental frequency

Note

These functions are typically applied to a star grid but they can be applied to any
grid in which the phase voltages and currents are measurable.

StarCollectiveUeff
StarCollectiveUeff('u1','u2','u3','freq')

Calculates the collective effective voltage in a star grid:

Ux_eff : the effective value of phase voltage ux

u4 = u1 + u2 + u3

108 Issue 8.2

Electrical functions ibaAnalyzer

StarCollectiveIeff
StarCollectiveIeff('i1','i2','i3','i4','freq')

Calculates the collective effective current in a star grid:

Ix,eff : the effective value of the line current ix

StarActiveP
StarActiveP('u1','u2','u3','i1','i2','i3','freq')

Calculates the active power in a star grid:

N : Number of samples in a period

ux : Voltage of phase x

ix : Current of phase x

StarApparentP
StarApparentP('u1','u2','u3','i1','i2','i3','i4','freq')

Calculates the apparent power in a star grid:

Ueff : the collective effective voltage

Ieff : the collective effective current

StarReactiveP
StarReactiveP('u1’,'u2’,'u3’,'i1’,'i2’,'i3’,'i4’,'freq')

Calculates the reactive power in a star grid:

S : apparent power

P : active power

 Issue 8.2 109

ibaAnalyzer Electrical functions

StarReactivePS
StarReactivePS('u1','u2','u3','i1','i2','i3','i4','freq')

Calculates the signed reactive power QS in the star grid:

StarActivePFactor
StarActivePFactor('u1','u2','u3','i1','i2','i3','i4','freq')

Calculates the active power factor in a star grid:

S : apparent power

P : active power

StarReactivePFactor
StarReactivePFactor('u1','u2','u3','i1','i2','i3','i4','freq')

Calculates the reactive power factor in a star grid:

Q : reactive power

P : active power

StarReactivePFactorS
StarReactivePFactorS('u1','u2','u3','i1','i2','i3','i4','freq')

Calculates the signed reactive power factor in a star grid:

QS : signed reactive power

P : active power

110 Issue 8.2

Electrical functions ibaAnalyzer

15.4	 Harmonic	functions

HarmEff
HarmEff ('u','Nharm','freq')

Calculates the effective value of 'NHarm' harmonic component of signal 'u.'

u(n) : Sample n of signal u

uReal,k : the real part of the kth harmonic component of u

uImag,k : the imaginary part of the kth harmonic component of u

Uk : the effective value of the kth harmonic component of u

HarmPhase
HarmPhase ('u','Nharm','freq')

Calculates the phase of 'NHarm' harmonic component of signal ‘u:

uReal,k : the real part of the kth harmonic component of u

uImag,k : the imaginary part of the kth harmonic component of u

φk : the phase offset of the kth harmonic component of u

StarHarmUGeff
StarHarmUGeff ('u1','u2','u3','freq')

Calculates the effective negative sequence voltage UGeff.:

ux,1 : Fundamental harmonic component (complex) of phase voltage ux

 Issue 8.2 111

ibaAnalyzer Electrical functions

StarHarmUMeff
StarHarmUMeff ('u1', 'u2', 'u3', 'freq')

Calculates the positive sequence system voltage UMeff:

ux,1 : Fundamental harmonic component (complex) of phase voltage ux

StarHarmUnSym
StarHarmUnSym ('u1', 'u2', 'u3', 'freq')

Calculates the voltage unbalance in a star grid:

The result is expressed in %.

WeightedDistortionFactor
WeightedDistortionFactor ('u’,'Nharm'=50,'freq')

Calculates the weighted distortion factor of 'u' (all phases) using 'Nharm' harmonics:

Un : Effective value of the nth harmonic component of signal u

UnweightedDistortionFactor
UnweightedDistortionFactor ('u’,'Nharm'=50,'freq')

Calculates the unweighted distortion factor of 'u' (all phases) using 'Nharm' harmonics:

Un : Effective value of the nth harmonic component of signal u

112 Issue 8.2

Electrical functions ibaAnalyzer

15.4.1 TIF
TIF ('u’,'Nharm'=50,'freq')

Calculates the Telephone Interference Factor of 'u,' considering the first 'nHarm' harmonics.

Kn = 5*n*freq

Pn = BTS coefficient (British Telephone System)

Un : Effective value of the voltage the nth harmonic component of signal u

U1 : Examples

113 Issue 8.2 113

ibaAnalyzer Support and contact

16 Support and contact
Support

Phone: +49 911 97282-14

Email: support@iba-ag.com

Note

If you need support for software products, please state the number of the licen-
se container. For hardware products, please have the serial number of the device
ready.

Contact

Headquarters

iba AG
Koenigswarterstrasse 44
90762 Fuerth
Germany

Phone: +49 911 97282-0

Email: iba@iba-ag.com

Mailing address

iba AG
Postbox 1828
D-90708 Fuerth, Germany

Delivery address

iba AG
Gebhardtstrasse 10
90762 Fuerth, Germany

Regional and Worldwide

For contact data of your regional iba office or representative
please refer to our web site:

www.iba-ag.com

	1 About this documentation
	1.1 Target group
	1.2 Notations
	1.3 Used symbols
	1.4 Documentation structure

	2 Function and use
	2.1 Configuration
	2.2 Expression syntax and wildcards
	2.3 How the expression builder works
	2.4 Diagnostics / syntax error detection

	3 Logical functions
	3.1 Comparative operations
	3.2 Boolean functions
	3.3 Bitwise Boolean functions
	3.4 Branching
	3.4.1 If
	3.4.2 Switch

	3.5 Edge Detection
	3.5.1 OneShot
	3.5.2 SetReset

	3.6 Timer functions (IEC 61131-3)
	3.7 IsData / Coalesce

	4 Mathematical functions
	4.1 Fundamental arithmetic operations
	4.1.1 Fundamental arithmetic operations +, -, *, /
	4.1.2 Abs
	4.1.3 Mod
	4.1.4 Ceiling / Floor / Round

	4.2 Integral and differential calculation
	4.2.1 Int
	4.2.2 Diff / Dif

	4.3 Powers and square roots
	4.3.1 Pow
	4.3.2 Sqrt

	4.4 e functions and logarithms
	4.4.1 Exp
	4.4.2 Log
	4.4.3 Log10

	4.5 PI
	4.6 Sum
	4.7 Trigonometric functions

	5 Statistical functions
	5.1 Average (Avg)
	5.2 Maxima (Max)
	5.3 Minima (Min)
	5.4 Standard deviation (StdDev)
	5.5 Percentile
	5.6 Correlation and covariance (Correl, CoVar)
	5.7 Kurtosis
	5.8 Skewness

	6 Counting and sorting
	6.1 Count
	6.2 CountSamples
	6.3 Sort

	7 Time / length functions
	7.1 Convert and resample
	7.1.1 ConvertBase
	7.1.2 Resample
	7.1.3 SampleAndHold
	7.1.4 SampleOnce

	7.2 Time
	7.2.1 Time
	7.2.2 AbsoluteTime

	7.3 Conversion from time to length reference

	8 X-axis operations
	8.1 Shift along the X axis
	8.2 XCutRange / XCutValid
	8.3 XMarkRange / XMarkValid
	8.4 XMirror / XStretch / XStretchScale
	8.5 XFirst / XLast / XNow
	8.6 XSize / XSumValid
	8.7 XValues / YValues
	8.8 VarDelay
	8.9 XY
	8.10 XMarker1 / XMarker2
	8.11 XBase / XOffset
	8.12 FillGaps
	8.13 XAlignFft

	9 Vector operations
	9.1 GetFirstIndex / GetLastIndex
	9.2 GetRows
	9.3 GetZoneCenters
	9.4 GetZoneOffset
	9.5 GetZoneWidths
	9.6 MakeVector
	9.7 SetZoneWidths
	9.8 VectorAvg
	9.9 VectorKurtosis
	9.10 VectorMarkRange
	9.11 VectorMin / VectorMax
	9.12 VectorPercentile
	9.13 VectorSkewness
	9.14 VectorStdDev
	9.15 VectorSum
	9.16 VectorToSignal / SignalToVector
	9.17 Traverse / TraverseW
	9.18 VectorPolynomial / VectorLSQPolyCoef

	10 Text functions
	10.1 InfofieldText / ChannelInfoFieldText / ModuleInfoFieldText
	10.2 TextCompare / CompareText
	10.3 ToText / FromText
	10.4 TrimText
	10.5 ConcatText
	10.6 CharValue
	10.7 CountText / TextLength
	10.8 DeleteText / InsertText / ReplaceText
	10.9 MidText / FindText

	11 Miscellaneous functions
	11.1 Debounce
	11.2 Envelope
	11.3 False / True
	11.4 GetBit / GetBitMask
	11.5 HighPrecision
	11.6 InfoField / ChannelInfoField / ModuleInfoField
	11.7 LimitAlarm
	11.8 ManY
	11.9 Rand
	11.10 Sign
	11.11 Technostring
	11.12 WindowAlarm
	11.13 YatX / SetYatX
	11.14 PulseFreq

	12 Filter functions
	12.1 LP
	12.2 PreWhiten

	13 Technological functions
	13.1 ChebyCoef
	13.2 CubicSpline
	13.3 LSQPolyCoef
	13.4 Polynomial
	13.5 LSQExponentialCoef
	13.6 Exponential

	14 Spectral analysis (FT operations)
	14.1 FftInTimeAmpl / FftInTimePower
	14.2 FftOrderAnalysisAmpl / FftOrderAnalysisPower
	14.3 FftPeaksInTimeAmpl / FftPeaksInTimePower
	14.4 FftAmpl / FftPower
	14.5 FftComplex
	14.6 FftReal / FftRealInverse
	14.7 AWeighting / DbScale
	14.8 IntSpectrum

	15 Electrical functions
	15.1 Eff
	15.2 Delta functions
	15.3 Star functions
	15.4 Harmonic functions
	15.4.1 TIF

	16 Support and contact

